
Prove that the given equation ${{\tan }^{2}}A-{{\sin }^{2}}A={{\tan }^{2}}A.si{{n}^{2}}A$.
Answer
616.2k+ views
Hint: We will first find the relation between $\tan A,\sin A$ and $\cos A$. And then substitute the value of $\tan A$ with that relation. Further we will find a relation between $\sin A$ and $\cos A$, and use that in the equation to obtain the required expression.
Complete Step-by-Step solution:
Consider a right-angled triangle ABC, right angled at B. Let $A$ be the angle formed in the triangle at vertex A. Also, let perpendicular side with respect to angle $A$ be $p$, base with respect to angle $A$ be $b$ and hypotenuse be $h$.
Then, from the definition of $\sin A,\cos A \text{and}\tan A$, we have,
$\sin A=\dfrac{p}{h}$,
$\cos A=\dfrac{b}{h}$,
and, $\tan A=\dfrac{p}{b}$.
Now, we try to form a relation between $\tan A,\sin A$ and $\cos A$. For this, let us divide $\sin \theta $ and $\cos \theta $. So, we get,
\[\dfrac{\sin A}{\cos A}=\dfrac{\dfrac{p}{h}}{\dfrac{b}{h}}\]
\[=\dfrac{p}{h}\div \dfrac{b}{h}\]
Converting division to multiplication by taking reciprocal of the term in above equation, we get,
\[=\dfrac{p}{h}\times \dfrac{h}{b}\]
Cancelling $h$ from numerator and denominator, we get,
\[=\dfrac{p}{b}\]
\[=\tan A\]
Therefore, $\tan A=\dfrac{\sin A}{\cos A}\cdots \cdots \left( i \right)$
Again, to form a relation between $\sin A$ and $\cos A$, let us square both the terms and add them. So, we get,
${{\sin }^{2}}A+{{\cos }^{2}}A={{\left( \dfrac{p}{h} \right)}^{2}}+{{\left( \dfrac{b}{h} \right)}^{2}}$
$=\dfrac{{{p}^{2}}}{{{h}^{2}}}+\dfrac{{{q}^{2}}}{{{h}^{2}}}$
Taking LCM,
$=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{h}^{2}}}$
Using Pythagoras theorem, which states that: Square of the hypotenuse of a right angled triangle is equal to sum of square of remaining two sides of a triangle , that is, ${{p}^{2}}+{{b}^{2}}={{h}^{2}}$; in above equation, we get,
$\dfrac{{{p}^{2}}+{{b}^{2}}}{{{h}^{2}}}=\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
$\begin{align}
& \Rightarrow {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\
& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A\cdots \cdots \left( ii \right) \\
\end{align}$
Now, taking left hand side of the given equation, we have,
${{\tan }^{2}}A-{{\sin }^{2}}A$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& {{\tan }^{2}}A-{{\sin }^{2}}A \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}-{{\sin }^{2}}A \\
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-{{\sin }^{2}}A \\
\end{align}$
Taking L.C.M. of ${{\cos }^{2}}A$ and 1, which is ${{\cos }^{2}}A$, we get,
$\begin{align}
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-\dfrac{{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A-{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
\end{align}$
Taking ${{\sin }^{2}}A$ common from the numerator, we get,
$=\dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A}$
Using equation $\left( ii \right)$ here, we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A.{{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
\end{align}$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
& ={{\tan }^{2}}A.{{\sin }^{2}}A \\
\end{align}$
Therefore, ${{\tan }^{2}}A-{{\sin }^{2}}A={{\tan }^{2}}A.si{{n}^{2}}A$.
Hence, the given equation is proved.
Note: In this question, you can also start by applying ${{\tan }^{2}}A+{{\sec }^{2}}A=1$ identity. But it will require extra calculations. So, it is better to take this approach.
Complete Step-by-Step solution:
Consider a right-angled triangle ABC, right angled at B. Let $A$ be the angle formed in the triangle at vertex A. Also, let perpendicular side with respect to angle $A$ be $p$, base with respect to angle $A$ be $b$ and hypotenuse be $h$.
Then, from the definition of $\sin A,\cos A \text{and}\tan A$, we have,
$\sin A=\dfrac{p}{h}$,
$\cos A=\dfrac{b}{h}$,
and, $\tan A=\dfrac{p}{b}$.
Now, we try to form a relation between $\tan A,\sin A$ and $\cos A$. For this, let us divide $\sin \theta $ and $\cos \theta $. So, we get,
\[\dfrac{\sin A}{\cos A}=\dfrac{\dfrac{p}{h}}{\dfrac{b}{h}}\]
\[=\dfrac{p}{h}\div \dfrac{b}{h}\]
Converting division to multiplication by taking reciprocal of the term in above equation, we get,
\[=\dfrac{p}{h}\times \dfrac{h}{b}\]
Cancelling $h$ from numerator and denominator, we get,
\[=\dfrac{p}{b}\]
\[=\tan A\]
Therefore, $\tan A=\dfrac{\sin A}{\cos A}\cdots \cdots \left( i \right)$
Again, to form a relation between $\sin A$ and $\cos A$, let us square both the terms and add them. So, we get,
${{\sin }^{2}}A+{{\cos }^{2}}A={{\left( \dfrac{p}{h} \right)}^{2}}+{{\left( \dfrac{b}{h} \right)}^{2}}$
$=\dfrac{{{p}^{2}}}{{{h}^{2}}}+\dfrac{{{q}^{2}}}{{{h}^{2}}}$
Taking LCM,
$=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{h}^{2}}}$
Using Pythagoras theorem, which states that: Square of the hypotenuse of a right angled triangle is equal to sum of square of remaining two sides of a triangle , that is, ${{p}^{2}}+{{b}^{2}}={{h}^{2}}$; in above equation, we get,
$\dfrac{{{p}^{2}}+{{b}^{2}}}{{{h}^{2}}}=\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
$\begin{align}
& \Rightarrow {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\
& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A\cdots \cdots \left( ii \right) \\
\end{align}$
Now, taking left hand side of the given equation, we have,
${{\tan }^{2}}A-{{\sin }^{2}}A$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& {{\tan }^{2}}A-{{\sin }^{2}}A \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}-{{\sin }^{2}}A \\
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-{{\sin }^{2}}A \\
\end{align}$
Taking L.C.M. of ${{\cos }^{2}}A$ and 1, which is ${{\cos }^{2}}A$, we get,
$\begin{align}
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-\dfrac{{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A-{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
\end{align}$
Taking ${{\sin }^{2}}A$ common from the numerator, we get,
$=\dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A}$
Using equation $\left( ii \right)$ here, we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A.{{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
\end{align}$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
& ={{\tan }^{2}}A.{{\sin }^{2}}A \\
\end{align}$
Therefore, ${{\tan }^{2}}A-{{\sin }^{2}}A={{\tan }^{2}}A.si{{n}^{2}}A$.
Hence, the given equation is proved.
Note: In this question, you can also start by applying ${{\tan }^{2}}A+{{\sec }^{2}}A=1$ identity. But it will require extra calculations. So, it is better to take this approach.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

