
Prove that the given equation ${{\tan }^{2}}A-{{\sin }^{2}}A={{\tan }^{2}}A.si{{n}^{2}}A$.
Answer
616.2k+ views
Hint: We will first find the relation between $\tan A,\sin A$ and $\cos A$. And then substitute the value of $\tan A$ with that relation. Further we will find a relation between $\sin A$ and $\cos A$, and use that in the equation to obtain the required expression.
Complete Step-by-Step solution:
Consider a right-angled triangle ABC, right angled at B. Let $A$ be the angle formed in the triangle at vertex A. Also, let perpendicular side with respect to angle $A$ be $p$, base with respect to angle $A$ be $b$ and hypotenuse be $h$.
Then, from the definition of $\sin A,\cos A \text{and}\tan A$, we have,
$\sin A=\dfrac{p}{h}$,
$\cos A=\dfrac{b}{h}$,
and, $\tan A=\dfrac{p}{b}$.
Now, we try to form a relation between $\tan A,\sin A$ and $\cos A$. For this, let us divide $\sin \theta $ and $\cos \theta $. So, we get,
\[\dfrac{\sin A}{\cos A}=\dfrac{\dfrac{p}{h}}{\dfrac{b}{h}}\]
\[=\dfrac{p}{h}\div \dfrac{b}{h}\]
Converting division to multiplication by taking reciprocal of the term in above equation, we get,
\[=\dfrac{p}{h}\times \dfrac{h}{b}\]
Cancelling $h$ from numerator and denominator, we get,
\[=\dfrac{p}{b}\]
\[=\tan A\]
Therefore, $\tan A=\dfrac{\sin A}{\cos A}\cdots \cdots \left( i \right)$
Again, to form a relation between $\sin A$ and $\cos A$, let us square both the terms and add them. So, we get,
${{\sin }^{2}}A+{{\cos }^{2}}A={{\left( \dfrac{p}{h} \right)}^{2}}+{{\left( \dfrac{b}{h} \right)}^{2}}$
$=\dfrac{{{p}^{2}}}{{{h}^{2}}}+\dfrac{{{q}^{2}}}{{{h}^{2}}}$
Taking LCM,
$=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{h}^{2}}}$
Using Pythagoras theorem, which states that: Square of the hypotenuse of a right angled triangle is equal to sum of square of remaining two sides of a triangle , that is, ${{p}^{2}}+{{b}^{2}}={{h}^{2}}$; in above equation, we get,
$\dfrac{{{p}^{2}}+{{b}^{2}}}{{{h}^{2}}}=\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
$\begin{align}
& \Rightarrow {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\
& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A\cdots \cdots \left( ii \right) \\
\end{align}$
Now, taking left hand side of the given equation, we have,
${{\tan }^{2}}A-{{\sin }^{2}}A$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& {{\tan }^{2}}A-{{\sin }^{2}}A \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}-{{\sin }^{2}}A \\
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-{{\sin }^{2}}A \\
\end{align}$
Taking L.C.M. of ${{\cos }^{2}}A$ and 1, which is ${{\cos }^{2}}A$, we get,
$\begin{align}
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-\dfrac{{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A-{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
\end{align}$
Taking ${{\sin }^{2}}A$ common from the numerator, we get,
$=\dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A}$
Using equation $\left( ii \right)$ here, we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A.{{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
\end{align}$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
& ={{\tan }^{2}}A.{{\sin }^{2}}A \\
\end{align}$
Therefore, ${{\tan }^{2}}A-{{\sin }^{2}}A={{\tan }^{2}}A.si{{n}^{2}}A$.
Hence, the given equation is proved.
Note: In this question, you can also start by applying ${{\tan }^{2}}A+{{\sec }^{2}}A=1$ identity. But it will require extra calculations. So, it is better to take this approach.
Complete Step-by-Step solution:
Consider a right-angled triangle ABC, right angled at B. Let $A$ be the angle formed in the triangle at vertex A. Also, let perpendicular side with respect to angle $A$ be $p$, base with respect to angle $A$ be $b$ and hypotenuse be $h$.
Then, from the definition of $\sin A,\cos A \text{and}\tan A$, we have,
$\sin A=\dfrac{p}{h}$,
$\cos A=\dfrac{b}{h}$,
and, $\tan A=\dfrac{p}{b}$.
Now, we try to form a relation between $\tan A,\sin A$ and $\cos A$. For this, let us divide $\sin \theta $ and $\cos \theta $. So, we get,
\[\dfrac{\sin A}{\cos A}=\dfrac{\dfrac{p}{h}}{\dfrac{b}{h}}\]
\[=\dfrac{p}{h}\div \dfrac{b}{h}\]
Converting division to multiplication by taking reciprocal of the term in above equation, we get,
\[=\dfrac{p}{h}\times \dfrac{h}{b}\]
Cancelling $h$ from numerator and denominator, we get,
\[=\dfrac{p}{b}\]
\[=\tan A\]
Therefore, $\tan A=\dfrac{\sin A}{\cos A}\cdots \cdots \left( i \right)$
Again, to form a relation between $\sin A$ and $\cos A$, let us square both the terms and add them. So, we get,
${{\sin }^{2}}A+{{\cos }^{2}}A={{\left( \dfrac{p}{h} \right)}^{2}}+{{\left( \dfrac{b}{h} \right)}^{2}}$
$=\dfrac{{{p}^{2}}}{{{h}^{2}}}+\dfrac{{{q}^{2}}}{{{h}^{2}}}$
Taking LCM,
$=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{h}^{2}}}$
Using Pythagoras theorem, which states that: Square of the hypotenuse of a right angled triangle is equal to sum of square of remaining two sides of a triangle , that is, ${{p}^{2}}+{{b}^{2}}={{h}^{2}}$; in above equation, we get,
$\dfrac{{{p}^{2}}+{{b}^{2}}}{{{h}^{2}}}=\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
$\begin{align}
& \Rightarrow {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\
& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A\cdots \cdots \left( ii \right) \\
\end{align}$
Now, taking left hand side of the given equation, we have,
${{\tan }^{2}}A-{{\sin }^{2}}A$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& {{\tan }^{2}}A-{{\sin }^{2}}A \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}-{{\sin }^{2}}A \\
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-{{\sin }^{2}}A \\
\end{align}$
Taking L.C.M. of ${{\cos }^{2}}A$ and 1, which is ${{\cos }^{2}}A$, we get,
$\begin{align}
& =\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-\dfrac{{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A-{{\cos }^{2}}A\times {{\sin }^{2}}A}{{{\cos }^{2}}A} \\
\end{align}$
Taking ${{\sin }^{2}}A$ common from the numerator, we get,
$=\dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A}$
Using equation $\left( ii \right)$ here, we get,
$\begin{align}
& \dfrac{{{\sin }^{2}}A(1-{{\cos }^{2}}A)}{{{\cos }^{2}}A} \\
& =\dfrac{{{\sin }^{2}}A.{{\sin }^{2}}A}{{{\cos }^{2}}A} \\
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
\end{align}$
Using equation $\left( i \right)$ here, we get,
$\begin{align}
& ={{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}{{\sin }^{2}}A \\
& ={{\tan }^{2}}A.{{\sin }^{2}}A \\
\end{align}$
Therefore, ${{\tan }^{2}}A-{{\sin }^{2}}A={{\tan }^{2}}A.si{{n}^{2}}A$.
Hence, the given equation is proved.
Note: In this question, you can also start by applying ${{\tan }^{2}}A+{{\sec }^{2}}A=1$ identity. But it will require extra calculations. So, it is better to take this approach.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

