
Prove that the general value of $\theta $ which satisfy the equation $\left( \cos \theta +i\sin \theta \right){{\left( \cos \theta +i\sin \theta \right)}^{2}}{{\left( \cos \theta +i\sin \theta \right)}^{3}}...=1$ is $2n\pi $, where ‘n’ is an integer.
Answer
590.4k+ views
Hint: Simplify the given expression using the formula ${{e}^{i\theta }}=\cos \theta +i\sin \theta $. Further use the fact that the product of an infinite sequence of increasing terms can take value 1 if and only if the value of each term is 1. Write equations based on this data and simplify the equation to calculate the value of $\theta $ which satisfies the given equation.
Complete step-by-step solution-
We have to prove that the general value of $\theta $ which satisfy the equation $\left( \cos \theta +i\sin \theta \right){{\left( \cos \theta +i\sin \theta \right)}^{2}}{{\left( \cos \theta +i\sin \theta \right)}^{3}}...=1$ is $2\pi n$, where ‘n’ is an integer.
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $.
Thus, we can rewrite the equation $\left( \cos \theta +i\sin \theta \right){{\left( \cos \theta +i\sin \theta \right)}^{2}}{{\left( \cos \theta +i\sin \theta \right)}^{3}}...=1$ as $\left( {{e}^{i\theta }} \right){{\left( {{e}^{i\theta }} \right)}^{2}}{{\left( {{e}^{i\theta }} \right)}^{3}}...=1$.
We know that $y={{e}^{i\theta }}$ is an increasing function whose range is always greater than or equal to zero.
We also know that the product of an infinite sequence of increasing terms can take value 1 if and only if the value of each term is 1.
Thus, we have ${{e}^{i\theta }}=1,{{\left( {{e}^{i\theta }} \right)}^{2}}=1,{{\left( {{e}^{i\theta }} \right)}^{3}}=1,...$.
So, we must have ${{e}^{i\theta }}=1$.
Thus, we have $\cos \theta +i\sin \theta =1$, which means $\cos \theta =1,\sin \theta =0$.
We will now calculate solutions to the equations $\cos \theta =1$ and $\sin \theta =0$.
We know that the general solutions of the equation $\cos \theta =1$ are $\theta =2n\pi ,n\in I$.
We also know that the general solutions of the equation $\sin \theta =0$ are $\theta =n\pi ,n\in I$.
So, the common solutions of the equations $\cos \theta =1$ and $\sin \theta =0$ is $\theta =2n\pi ,n\in I$.
Hence, we have proved that the general value of $\theta $ which satisfy the equation $\left( \cos \theta +i\sin \theta \right){{\left( \cos \theta +i\sin \theta \right)}^{2}}{{\left( \cos \theta +i\sin \theta \right)}^{3}}...=1$ is $2\pi n$, where ‘n’ is an integer.
Note: We must know how to write general solutions of trigonometric equations; otherwise, we won’t be able to prove the given statement. We must also keep in mind that we must consider the solutions common to both the trigonometric equations.
Complete step-by-step solution-
We have to prove that the general value of $\theta $ which satisfy the equation $\left( \cos \theta +i\sin \theta \right){{\left( \cos \theta +i\sin \theta \right)}^{2}}{{\left( \cos \theta +i\sin \theta \right)}^{3}}...=1$ is $2\pi n$, where ‘n’ is an integer.
We know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $.
Thus, we can rewrite the equation $\left( \cos \theta +i\sin \theta \right){{\left( \cos \theta +i\sin \theta \right)}^{2}}{{\left( \cos \theta +i\sin \theta \right)}^{3}}...=1$ as $\left( {{e}^{i\theta }} \right){{\left( {{e}^{i\theta }} \right)}^{2}}{{\left( {{e}^{i\theta }} \right)}^{3}}...=1$.
We know that $y={{e}^{i\theta }}$ is an increasing function whose range is always greater than or equal to zero.
We also know that the product of an infinite sequence of increasing terms can take value 1 if and only if the value of each term is 1.
Thus, we have ${{e}^{i\theta }}=1,{{\left( {{e}^{i\theta }} \right)}^{2}}=1,{{\left( {{e}^{i\theta }} \right)}^{3}}=1,...$.
So, we must have ${{e}^{i\theta }}=1$.
Thus, we have $\cos \theta +i\sin \theta =1$, which means $\cos \theta =1,\sin \theta =0$.
We will now calculate solutions to the equations $\cos \theta =1$ and $\sin \theta =0$.
We know that the general solutions of the equation $\cos \theta =1$ are $\theta =2n\pi ,n\in I$.
We also know that the general solutions of the equation $\sin \theta =0$ are $\theta =n\pi ,n\in I$.
So, the common solutions of the equations $\cos \theta =1$ and $\sin \theta =0$ is $\theta =2n\pi ,n\in I$.
Hence, we have proved that the general value of $\theta $ which satisfy the equation $\left( \cos \theta +i\sin \theta \right){{\left( \cos \theta +i\sin \theta \right)}^{2}}{{\left( \cos \theta +i\sin \theta \right)}^{3}}...=1$ is $2\pi n$, where ‘n’ is an integer.
Note: We must know how to write general solutions of trigonometric equations; otherwise, we won’t be able to prove the given statement. We must also keep in mind that we must consider the solutions common to both the trigonometric equations.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

