
Prove that the following trigonometric identity is true:
$\dfrac{{{\cot }^{2}}\theta \left( \sec \theta -1 \right)}{1+\sin \theta }={{\sec }^{2}}\theta \dfrac{1-\sin \theta }{1+\sec \theta }$
Answer
617.1k+ views
Hint:Take the left hand side of the equation. Try to convert the left hand side into the right hand side by using the following formulas:
$\cot \theta =\dfrac{\cos \theta }{\sin \theta },\cos \theta =\dfrac{1}{\sec \theta },{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Complete step by step answer:
Let us first take the left hand side of the given equation. That is,
$\dfrac{{{\cot }^{2}}\theta \left( \sec \theta -1 \right)}{1+\sin \theta }$
Now put, $\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta }$ in the above expression.
$=\dfrac{{{\left( \dfrac{\cos \theta }{\sin \theta } \right)}^{2}}\left( \dfrac{1}{\cos \theta }-1 \right)}{1+\sin \theta }$
$=\dfrac{\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }\left( \dfrac{1-\cos \theta }{\cos \theta } \right)}{1+\sin \theta }$
$=\dfrac{{{\cos }^{2}}\theta \left( 1-\cos \theta \right)}{\cos \theta {{\sin }^{2}}\theta \left( 1+\sin \theta \right)}$
Now we know that, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
We can write ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta ,{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. There we have,
$=\dfrac{\left( 1-{{\sin }^{2}}\theta \right)\left( 1-\cos \theta \right)}{\cos \theta \left( 1-{{\cos }^{2}}\theta \right)\left( 1+\sin \theta \right)}$
$=\dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)\left( 1-\cos \theta \right)}{\cos \theta \left( 1+\cos \theta \right)\left( 1-\cos \theta \right)\left( 1+\sin \theta \right)}$ , by applying the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Now we can cancel out the common terms from the numerator and the denominator.
$=\dfrac{\left( 1-\sin \theta \right)}{\cos \theta \left( 1+\cos \theta \right)}$
As the right hand side has $\sec \theta $ we will put $\cos \theta =\dfrac{1}{\sec \theta }$ in the above expression to get the required form.
$=\dfrac{1-\sin \theta }{\dfrac{1}{\sec \theta }\left( 1+\dfrac{1}{\sec \theta } \right)}$
$=\dfrac{\left( 1-\sin \theta \right)}{\dfrac{\left( 1+\sec \theta \right)}{{{\sec }^{2}}\theta }}$
$=\dfrac{{{\sec }^{2}}\theta \left( 1-\sin \theta \right)}{1+\sec \theta }$
$={{\sec }^{2}}\theta \dfrac{1-\sin \theta }{1+\sec \theta }$ , which is our right hand side.
Hence, our left hand side = our right hand side.
$\dfrac{{{\cot }^{2}}\theta \left( \sec \theta -1 \right)}{1+\sin \theta }={{\sec }^{2}}\theta \dfrac{1-\sin \theta }{1+\sec \theta }$
Note: Alternatively we can start the proof from the right hand side also.
Take the right hand side,
${{\sec }^{2}}\theta \dfrac{1-\sin \theta }{1+\sec \theta }$
Let us put $\sec \theta =\dfrac{1}{\cos \theta }$ in the above expression.
$=\dfrac{\left( 1-\sin \theta \right)}{{{\cos }^{2}}\theta \left( 1+\sec \theta \right)}$
Now we can put ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Therefore we have,
$=\dfrac{\left( 1-\sin \theta \right)}{\left( 1-{{\sin }^{2}}\theta \right)\left( 1+\sec \theta \right)}$
$=\dfrac{\left( 1-\sin \theta \right)}{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)\left( 1+\dfrac{1}{\cos \theta } \right)}$
Now we can cancel out the common terms from the numerator and the denominator.
$=\dfrac{\cos \theta }{\left( 1+\sin \theta \right)\left( 1+\cos \theta \right)}$
Multiply both the numerator and the denominator by $\cos \theta \left( 1-\cos \theta \right)$.
$=\dfrac{{{\cos }^{2}}\theta \left( 1-\cos \theta \right)}{\left( 1+\sin \theta \right)\left( 1-{{\cos }^{2}}\theta \right)\cos \theta }$, by putting $\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)=1-{{\cos }^{2}}\theta $
$=\dfrac{{{\cos }^{2}}\theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta \cos \theta \left( 1+\sin \theta \right)}$ , by putting $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
$=\dfrac{{{\cot }^{2}}\theta \left( \dfrac{1}{\cos \theta }-1 \right)}{\left( 1+\sin \theta \right)}$ , by putting $\dfrac{1}{\cos \theta }=\sec \theta $
$=\dfrac{{{\cot }^{2}}\theta \left( \sec \theta -1 \right)}{\left( 1+\sin \theta \right)}$
Therefore the right hand side = left hand side.
$\cot \theta =\dfrac{\cos \theta }{\sin \theta },\cos \theta =\dfrac{1}{\sec \theta },{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Complete step by step answer:
Let us first take the left hand side of the given equation. That is,
$\dfrac{{{\cot }^{2}}\theta \left( \sec \theta -1 \right)}{1+\sin \theta }$
Now put, $\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta }$ in the above expression.
$=\dfrac{{{\left( \dfrac{\cos \theta }{\sin \theta } \right)}^{2}}\left( \dfrac{1}{\cos \theta }-1 \right)}{1+\sin \theta }$
$=\dfrac{\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }\left( \dfrac{1-\cos \theta }{\cos \theta } \right)}{1+\sin \theta }$
$=\dfrac{{{\cos }^{2}}\theta \left( 1-\cos \theta \right)}{\cos \theta {{\sin }^{2}}\theta \left( 1+\sin \theta \right)}$
Now we know that, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
We can write ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta ,{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. There we have,
$=\dfrac{\left( 1-{{\sin }^{2}}\theta \right)\left( 1-\cos \theta \right)}{\cos \theta \left( 1-{{\cos }^{2}}\theta \right)\left( 1+\sin \theta \right)}$
$=\dfrac{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)\left( 1-\cos \theta \right)}{\cos \theta \left( 1+\cos \theta \right)\left( 1-\cos \theta \right)\left( 1+\sin \theta \right)}$ , by applying the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Now we can cancel out the common terms from the numerator and the denominator.
$=\dfrac{\left( 1-\sin \theta \right)}{\cos \theta \left( 1+\cos \theta \right)}$
As the right hand side has $\sec \theta $ we will put $\cos \theta =\dfrac{1}{\sec \theta }$ in the above expression to get the required form.
$=\dfrac{1-\sin \theta }{\dfrac{1}{\sec \theta }\left( 1+\dfrac{1}{\sec \theta } \right)}$
$=\dfrac{\left( 1-\sin \theta \right)}{\dfrac{\left( 1+\sec \theta \right)}{{{\sec }^{2}}\theta }}$
$=\dfrac{{{\sec }^{2}}\theta \left( 1-\sin \theta \right)}{1+\sec \theta }$
$={{\sec }^{2}}\theta \dfrac{1-\sin \theta }{1+\sec \theta }$ , which is our right hand side.
Hence, our left hand side = our right hand side.
$\dfrac{{{\cot }^{2}}\theta \left( \sec \theta -1 \right)}{1+\sin \theta }={{\sec }^{2}}\theta \dfrac{1-\sin \theta }{1+\sec \theta }$
Note: Alternatively we can start the proof from the right hand side also.
Take the right hand side,
${{\sec }^{2}}\theta \dfrac{1-\sin \theta }{1+\sec \theta }$
Let us put $\sec \theta =\dfrac{1}{\cos \theta }$ in the above expression.
$=\dfrac{\left( 1-\sin \theta \right)}{{{\cos }^{2}}\theta \left( 1+\sec \theta \right)}$
Now we can put ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Therefore we have,
$=\dfrac{\left( 1-\sin \theta \right)}{\left( 1-{{\sin }^{2}}\theta \right)\left( 1+\sec \theta \right)}$
$=\dfrac{\left( 1-\sin \theta \right)}{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)\left( 1+\dfrac{1}{\cos \theta } \right)}$
Now we can cancel out the common terms from the numerator and the denominator.
$=\dfrac{\cos \theta }{\left( 1+\sin \theta \right)\left( 1+\cos \theta \right)}$
Multiply both the numerator and the denominator by $\cos \theta \left( 1-\cos \theta \right)$.
$=\dfrac{{{\cos }^{2}}\theta \left( 1-\cos \theta \right)}{\left( 1+\sin \theta \right)\left( 1-{{\cos }^{2}}\theta \right)\cos \theta }$, by putting $\left( 1+\cos \theta \right)\left( 1-\cos \theta \right)=1-{{\cos }^{2}}\theta $
$=\dfrac{{{\cos }^{2}}\theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta \cos \theta \left( 1+\sin \theta \right)}$ , by putting $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
$=\dfrac{{{\cot }^{2}}\theta \left( \dfrac{1}{\cos \theta }-1 \right)}{\left( 1+\sin \theta \right)}$ , by putting $\dfrac{1}{\cos \theta }=\sec \theta $
$=\dfrac{{{\cot }^{2}}\theta \left( \sec \theta -1 \right)}{\left( 1+\sin \theta \right)}$
Therefore the right hand side = left hand side.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

