Answer
Verified
399.3k+ views
Hint: A trapezium is a cyclic quadrilateral with one pair of parallel sides. An isosceles trapezoid has one pair of parallel sides and another pair of congruent sides (means equal in length). The diagonals are of equal length in isosceles trapezoid and by SSS congruency we will prove that base angles are equal.
Complete step-by-step solution:
Draw an isosceles trapezium ABCD.
Join the diagonal BD and AC in the isosceles trapezium ABCD.
By drawing the diagonals inside the trapezium we can see triangles \[\Delta ADC\]and \[\Delta BCD\] are formed.
We know we can prove equal any angles or sides of two triangles if they are congruent.
Congruency theorem is the method used to prove sides or angles equal in the case of triangles.
In \[\Delta ADC\]and \[\Delta BCD\]
We know opposite sides are equal in an Isosceles trapezium.
AD = BC
We know the diagonals are equal in an Isosceles trapezium.
AC = BD
We know the side DC is common in both the triangles implies,
DC = DC
So, we can say that by (side-side-side) SSS congruency the two triangles are congruent.
\[\Delta ADC\cong \Delta BCD\] (SSS postulate)
\[\angle D=\angle C\] (Congruency property)
Hence proved that base angles are equal.
Note: In the above problem we proved that two triangles are similar by SSS postulate. SSS postulate states that, if the three sides of one triangle are equal to three sides of another triangle, then we say that two triangles are congruent.
Complete step-by-step solution:
Draw an isosceles trapezium ABCD.
Join the diagonal BD and AC in the isosceles trapezium ABCD.
By drawing the diagonals inside the trapezium we can see triangles \[\Delta ADC\]and \[\Delta BCD\] are formed.
We know we can prove equal any angles or sides of two triangles if they are congruent.
Congruency theorem is the method used to prove sides or angles equal in the case of triangles.
In \[\Delta ADC\]and \[\Delta BCD\]
We know opposite sides are equal in an Isosceles trapezium.
AD = BC
We know the diagonals are equal in an Isosceles trapezium.
AC = BD
We know the side DC is common in both the triangles implies,
DC = DC
So, we can say that by (side-side-side) SSS congruency the two triangles are congruent.
\[\Delta ADC\cong \Delta BCD\] (SSS postulate)
\[\angle D=\angle C\] (Congruency property)
Hence proved that base angles are equal.
Note: In the above problem we proved that two triangles are similar by SSS postulate. SSS postulate states that, if the three sides of one triangle are equal to three sides of another triangle, then we say that two triangles are congruent.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE