
Prove that $\tan 75 + \cot 75 = 4$.
Answer
510.3k+ views
Hint: To prove that $\tan 75 + \cot 75 = 4$, first of all we will be writing 75 as 45 plus 30.
So, we can write $\tan 75$ as $\tan \left( {45 + 30} \right)$. Now, we have the formula for
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Using these, we will find the value of $\tan 75$ and then we know that cot is inverse of tan. Hence, we will get the value of $\cot 75$ as well. Now, we simply need to add these two values and check if the answer is 4 or not.
Complete step-by-step answer:
In this question, we have to prove that $\tan 75 + \cot 75 = 4$.
For proving this, we need to use some trigonometric relations and formulas and also some mathematical calculations.
Now, we do not have any direct formula for proving this. So, we need to use some mathematical calculations.
First of all we can write 75 as 45 plus 30. Therefore,
$\tan 75 = \tan \left( {45 + 30} \right)$
And $\cot 75 = \cot \left( {45 + 30} \right)$
Now, let us find the values of $\tan 75$ and $\cot 75$ separately.
$ \Rightarrow \tan \left( {45 + 30} \right)$
Now, we have a formula
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Here, A is 45 and B is 30. Therefore,
$ \Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{\tan 45 + \tan 30}}{{1 - \tan 45\tan 30}}$
Now, $\tan 45 = 1$ and $\tan 30 = \dfrac{1}{{\sqrt 3 }}$. Therefore,
$
\Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \left( 1 \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)}} \\
\Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} \\
$
And, for $\cot 75$, we know that cot is reciprocal of tan. So therefore,
$ \Rightarrow \cot 75 = \dfrac{1}{{\tan 75}}$
And we have found the value of $\tan 75 = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}$.
Therefore,
$ \Rightarrow \cot 75 = \dfrac{1}{{\tan 75}} = \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}}} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
Now, we have both the values and now we need to add them. Therefore,
$ \Rightarrow \tan 75 + \cot 75 = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} + \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
Now, taking LCM, we get
\[
\Rightarrow \tan 75 + \cot 75 = \dfrac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right) + \left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}} \\
\Rightarrow \tan 75 + \cot 75 = \dfrac{{3 + \sqrt 3 + \sqrt 3 + 1 + 3 - \sqrt 3 - \sqrt 3 + 1}}{{3 + \sqrt 3 - \sqrt 3 - 1}} \\
\Rightarrow \tan 75 + \cot 75 = \dfrac{{8 + 2\sqrt 3 - 2\sqrt 3 }}{2} \\
\Rightarrow \tan 75 + \cot 75 = \dfrac{8}{2} \\
\Rightarrow \tan 75 + \cot 75 = 4 \\
\]
Hence, LHS = RHS.
Therefore, we have proved $\tan 75 + \cot 75 = 4$.
Note: We can also use another method for proving that $\tan 75 + \cot 75 = 4$.
First of all, we know that $\cot 75 = \dfrac{1}{{\tan 75}}$. Therefore, we get
$ \Rightarrow \tan 75 + \dfrac{1}{{\tan 75}} = 4$- - - - - - - (1)
Taking LCM, we get
$
\Rightarrow \dfrac{{{{\tan }^2}75 + 1}}{{\tan 75}} = 4 \\
\Rightarrow {\tan ^2}75 + 1 = 4\tan 75 \\
\Rightarrow {\tan ^2}75 - 4\tan 75 + 1 = 0 \\
$
Now, let tan75 be equal to x.
$\tan 75 = x$
Therefore,
$ \Rightarrow {x^2} - 4x + 1 = 0$
Using the quadratic formula, we get
\[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2}\]
$ \Rightarrow x = \dfrac{{4 + \sqrt {12} }}{2} = \dfrac{{4 + 2\sqrt 3 }}{2} = 2 + \sqrt 3 $
Therefore, $\tan 75 = 2 + \sqrt 3 $
Put this value in equation (1), we get
$
\Rightarrow \tan 75 + \dfrac{1}{{\tan 75}} = 4 \\
\Rightarrow \left( {2 + \sqrt 3 } \right) + \dfrac{1}{{\left( {2 + \sqrt 3 } \right)}} = 4 \\
\Rightarrow \dfrac{{\left( {2 + \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right) + 1}}{{\left( {2 + \sqrt 3 } \right)}} = 4 \\
\Rightarrow \dfrac{{8 + 4\sqrt 3 }}{{2 + \sqrt 3 }} = 4 \\
\Rightarrow \dfrac{{8 + 4\sqrt 3 }}{{2 + \sqrt 3 }} \times \dfrac{{\left( {2 - \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)}} = 4 \\
\Rightarrow \dfrac{{16 - 8\sqrt 3 + 8\sqrt 3 - 12}}{{4 - 2\sqrt 3 + 2\sqrt 3 - 3}} = 4 \\
\Rightarrow 4 = 4 \\
$
Hence, we have proved that $\tan 75 + \cot 75 = 4$.
So, we can write $\tan 75$ as $\tan \left( {45 + 30} \right)$. Now, we have the formula for
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Using these, we will find the value of $\tan 75$ and then we know that cot is inverse of tan. Hence, we will get the value of $\cot 75$ as well. Now, we simply need to add these two values and check if the answer is 4 or not.
Complete step-by-step answer:
In this question, we have to prove that $\tan 75 + \cot 75 = 4$.
For proving this, we need to use some trigonometric relations and formulas and also some mathematical calculations.
Now, we do not have any direct formula for proving this. So, we need to use some mathematical calculations.
First of all we can write 75 as 45 plus 30. Therefore,
$\tan 75 = \tan \left( {45 + 30} \right)$
And $\cot 75 = \cot \left( {45 + 30} \right)$
Now, let us find the values of $\tan 75$ and $\cot 75$ separately.
$ \Rightarrow \tan \left( {45 + 30} \right)$
Now, we have a formula
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Here, A is 45 and B is 30. Therefore,
$ \Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{\tan 45 + \tan 30}}{{1 - \tan 45\tan 30}}$
Now, $\tan 45 = 1$ and $\tan 30 = \dfrac{1}{{\sqrt 3 }}$. Therefore,
$
\Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \left( 1 \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)}} \\
\Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} \\
$
And, for $\cot 75$, we know that cot is reciprocal of tan. So therefore,
$ \Rightarrow \cot 75 = \dfrac{1}{{\tan 75}}$
And we have found the value of $\tan 75 = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}$.
Therefore,
$ \Rightarrow \cot 75 = \dfrac{1}{{\tan 75}} = \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}}} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
Now, we have both the values and now we need to add them. Therefore,
$ \Rightarrow \tan 75 + \cot 75 = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} + \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
Now, taking LCM, we get
\[
\Rightarrow \tan 75 + \cot 75 = \dfrac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right) + \left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}} \\
\Rightarrow \tan 75 + \cot 75 = \dfrac{{3 + \sqrt 3 + \sqrt 3 + 1 + 3 - \sqrt 3 - \sqrt 3 + 1}}{{3 + \sqrt 3 - \sqrt 3 - 1}} \\
\Rightarrow \tan 75 + \cot 75 = \dfrac{{8 + 2\sqrt 3 - 2\sqrt 3 }}{2} \\
\Rightarrow \tan 75 + \cot 75 = \dfrac{8}{2} \\
\Rightarrow \tan 75 + \cot 75 = 4 \\
\]
Hence, LHS = RHS.
Therefore, we have proved $\tan 75 + \cot 75 = 4$.
Note: We can also use another method for proving that $\tan 75 + \cot 75 = 4$.
First of all, we know that $\cot 75 = \dfrac{1}{{\tan 75}}$. Therefore, we get
$ \Rightarrow \tan 75 + \dfrac{1}{{\tan 75}} = 4$- - - - - - - (1)
Taking LCM, we get
$
\Rightarrow \dfrac{{{{\tan }^2}75 + 1}}{{\tan 75}} = 4 \\
\Rightarrow {\tan ^2}75 + 1 = 4\tan 75 \\
\Rightarrow {\tan ^2}75 - 4\tan 75 + 1 = 0 \\
$
Now, let tan75 be equal to x.
$\tan 75 = x$
Therefore,
$ \Rightarrow {x^2} - 4x + 1 = 0$
Using the quadratic formula, we get
\[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2}\]
$ \Rightarrow x = \dfrac{{4 + \sqrt {12} }}{2} = \dfrac{{4 + 2\sqrt 3 }}{2} = 2 + \sqrt 3 $
Therefore, $\tan 75 = 2 + \sqrt 3 $
Put this value in equation (1), we get
$
\Rightarrow \tan 75 + \dfrac{1}{{\tan 75}} = 4 \\
\Rightarrow \left( {2 + \sqrt 3 } \right) + \dfrac{1}{{\left( {2 + \sqrt 3 } \right)}} = 4 \\
\Rightarrow \dfrac{{\left( {2 + \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right) + 1}}{{\left( {2 + \sqrt 3 } \right)}} = 4 \\
\Rightarrow \dfrac{{8 + 4\sqrt 3 }}{{2 + \sqrt 3 }} = 4 \\
\Rightarrow \dfrac{{8 + 4\sqrt 3 }}{{2 + \sqrt 3 }} \times \dfrac{{\left( {2 - \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)}} = 4 \\
\Rightarrow \dfrac{{16 - 8\sqrt 3 + 8\sqrt 3 - 12}}{{4 - 2\sqrt 3 + 2\sqrt 3 - 3}} = 4 \\
\Rightarrow 4 = 4 \\
$
Hence, we have proved that $\tan 75 + \cot 75 = 4$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

