
Prove that: $ \tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ $
Answer
568.8k+ views
Hint: Write $ {70^0} $ as the sum of $ {20^0} $ and $ {50^0}. $ Then use the expansion formula of $ \tan $ to solve this question. One must be aware how to use allied angles to arrive at the result.
Complete step-by-step answer:
We will use the formula,
$ \tan (\theta + \phi ) = \dfrac{{\tan \theta + \tan \phi }}{{1 - \tan \theta \tan \phi }} $ . . . (1)
We can write
$ \tan 70^\circ = \tan (20^\circ + 50^\circ ) $
So, by using equation (1), we can write
$ \tan 70^\circ = \tan (20^\circ + 50^\circ ) $
$ \Rightarrow \tan 70^\circ = \dfrac{{\tan 20^\circ + \tan 50^\circ }}{{1 - \tan 20^\circ \tan 50^\circ }} $
By rearranging, we get
\[\tan 70^\circ \times (1 - \tan 20^\circ \tan 50^\circ ) = \tan 20^\circ + \tan 50^\circ \]
Expanding the bracket, we get
\[\tan 70^\circ - \tan 20^\circ \tan 50^\circ \tan 70^\circ = \tan 20^\circ + \tan 50^\circ \]
$ \Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \tan (90^\circ - {20^0}) = \tan 20^\circ + \tan 50^\circ $
\[ \Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \cot 20^\circ = \tan 20^\circ + \tan 50^\circ \] $ \left( {\because \tan ({{90}^0} - \theta ) = \cot \theta } \right) $
\[ \Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \dfrac{1}{{\tan 20^\circ }} = \tan 20^\circ + \tan 50^\circ \] $ \left( {\because \cot \theta = \dfrac{1}{{\tan \theta }}} \right) $
Cancel the common terms
\[ \Rightarrow \tan 70^\circ - \tan 50^\circ = \tan 20^\circ + \tan 50^\circ \]
\[ \Rightarrow \tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ \]
Hence proved.
Note: Observe the question carefully. You should understand that the number is LHS is the sum of numbers in RHS. That is when it should occur to you that you have to write $ {70^0} = {50^0} + {20^0} $
Finding a relation in the terms of question is important in such types of questions. Otherwise, it would be difficult to understand which formula to use to solve the question.
Complete step-by-step answer:
We will use the formula,
$ \tan (\theta + \phi ) = \dfrac{{\tan \theta + \tan \phi }}{{1 - \tan \theta \tan \phi }} $ . . . (1)
We can write
$ \tan 70^\circ = \tan (20^\circ + 50^\circ ) $
So, by using equation (1), we can write
$ \tan 70^\circ = \tan (20^\circ + 50^\circ ) $
$ \Rightarrow \tan 70^\circ = \dfrac{{\tan 20^\circ + \tan 50^\circ }}{{1 - \tan 20^\circ \tan 50^\circ }} $
By rearranging, we get
\[\tan 70^\circ \times (1 - \tan 20^\circ \tan 50^\circ ) = \tan 20^\circ + \tan 50^\circ \]
Expanding the bracket, we get
\[\tan 70^\circ - \tan 20^\circ \tan 50^\circ \tan 70^\circ = \tan 20^\circ + \tan 50^\circ \]
$ \Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \tan (90^\circ - {20^0}) = \tan 20^\circ + \tan 50^\circ $
\[ \Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \cot 20^\circ = \tan 20^\circ + \tan 50^\circ \] $ \left( {\because \tan ({{90}^0} - \theta ) = \cot \theta } \right) $
\[ \Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \dfrac{1}{{\tan 20^\circ }} = \tan 20^\circ + \tan 50^\circ \] $ \left( {\because \cot \theta = \dfrac{1}{{\tan \theta }}} \right) $
Cancel the common terms
\[ \Rightarrow \tan 70^\circ - \tan 50^\circ = \tan 20^\circ + \tan 50^\circ \]
\[ \Rightarrow \tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ \]
Hence proved.
Note: Observe the question carefully. You should understand that the number is LHS is the sum of numbers in RHS. That is when it should occur to you that you have to write $ {70^0} = {50^0} + {20^0} $
Finding a relation in the terms of question is important in such types of questions. Otherwise, it would be difficult to understand which formula to use to solve the question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

