
Prove that: \[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 \].
Answer
480.3k+ views
Hint: To find the value of \[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }\], we will first write the angles in terms of sum of known angles then we will expand it using trigonometric formulas. On simplification and using trigonometric triple angle identity we will further simplify by putting the value of known angles to find the result.
Some trigonometric formulas that we will use are as follows:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step-by-step answer:
We have to find the value of \[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }\]. For this we will start with writing the angles in terms of standard known angles.
We will write \[{70^ \circ }\] as \[\left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and \[{50^ \circ }\] as \[\left( {{{60}^ \circ } - {{10}^ \circ }} \right)\] because \[{60^ \circ }\] is a standard angle and we know its values for different trigonometric functions.
Some trigonometric formulas that we will use are as follows:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Also, we have \[\tan {60^ \circ } = \sqrt 3 \] and \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\].
We can write the given expression as
\[ \Rightarrow \]\[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }\]
\[ = \tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) - \tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right) + \tan {10^ \circ }\]
Using the formula, we can write
\[ = \dfrac{{\tan {{60}^ \circ } + \tan {{10}^ \circ }}}{{1 - \left( {\tan {{60}^ \circ } \times \tan {{10}^ \circ }} \right)}} - \dfrac{{\tan {{60}^ \circ } - \tan {{10}^ \circ }}}{{1 + \left( {\tan {{60}^ \circ } \times \tan {{10}^ \circ }} \right)}} + \tan {10^ \circ }\]
Putting the value of \[\tan {60^ \circ }\], we get
\[ = \dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \left( {\sqrt 3 \times \tan {{10}^ \circ }} \right)}} - \dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \left( {\sqrt 3 \times \tan {{10}^ \circ }} \right)}} + \tan {10^ \circ }\]
On rewriting we get
\[ = \dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \sqrt 3 \tan {{10}^ \circ }}} - \dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \sqrt 3 \tan {{10}^ \circ }}} + \tan {10^ \circ }\]
On taking LCM, we get
\[ = \dfrac{{\left( {\sqrt 3 + \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right) - \left( {\sqrt 3 - \tan {{10}^ \circ }} \right)\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right) + \tan {{10}^ \circ }\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)}}{{\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)}}\]
On multiplication and using the formula \[(a - b)(a + b) = {a^2} - {b^2}\], we get
\[ = \dfrac{{\left( {\sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ }} \right) - \left( {\sqrt 3 - 3\tan {{10}^ \circ } - \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ }} \right) + \left( {\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }} \right)}}{{\left( {1 - 3{{\tan }^2}{{10}^ \circ }} \right)}}\]
On simplification, we get
\[ = \dfrac{{\sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ } - \sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } - \sqrt 3 {{\tan }^2}{{10}^ \circ } + \tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
On simplification, we get
\[ = \dfrac{{9\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
On taking \[3\] common from the numerator we get
\[ = 3 \times \dfrac{{\left( {3\tan {{10}^ \circ } - {{\tan }^3}{{10}^ \circ }} \right)}}{{1 - 3{{\tan }^2}{{10}^ \circ }}} - - - (1)\]
As we know, \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Using this we can write \[(1)\]
\[ = 3 \times \tan \left( {3 \times {{10}^ \circ }} \right)\]
\[ = 3\tan {30^ \circ }\]
Using \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\], we get
\[ \Rightarrow \tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = 3 \times \dfrac{1}{{\sqrt 3 }}\]
On simplification,
\[ \Rightarrow \tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 \]
Hence, proved that \[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 \].
Note: Here, we have written \[\tan {70^ \circ }\] as \[\tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and \[\tan {50^ \circ }\] as \[\tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\] because we have known values of only few trigonometric angles. So, we have written it in a way that it can be splitted into known angles and we can substitute direct values of these angles which will simplify the equation. Also note that, we have not changed \[\tan {10^ \circ }\] because there is no way to write the sum of this angle in a way that it can give standard angles where we can put direct results.
Some trigonometric formulas that we will use are as follows:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step-by-step answer:
We have to find the value of \[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }\]. For this we will start with writing the angles in terms of standard known angles.
We will write \[{70^ \circ }\] as \[\left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and \[{50^ \circ }\] as \[\left( {{{60}^ \circ } - {{10}^ \circ }} \right)\] because \[{60^ \circ }\] is a standard angle and we know its values for different trigonometric functions.
Some trigonometric formulas that we will use are as follows:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Also, we have \[\tan {60^ \circ } = \sqrt 3 \] and \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\].
We can write the given expression as
\[ \Rightarrow \]\[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }\]
\[ = \tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) - \tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right) + \tan {10^ \circ }\]
Using the formula, we can write
\[ = \dfrac{{\tan {{60}^ \circ } + \tan {{10}^ \circ }}}{{1 - \left( {\tan {{60}^ \circ } \times \tan {{10}^ \circ }} \right)}} - \dfrac{{\tan {{60}^ \circ } - \tan {{10}^ \circ }}}{{1 + \left( {\tan {{60}^ \circ } \times \tan {{10}^ \circ }} \right)}} + \tan {10^ \circ }\]
Putting the value of \[\tan {60^ \circ }\], we get
\[ = \dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \left( {\sqrt 3 \times \tan {{10}^ \circ }} \right)}} - \dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \left( {\sqrt 3 \times \tan {{10}^ \circ }} \right)}} + \tan {10^ \circ }\]
On rewriting we get
\[ = \dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \sqrt 3 \tan {{10}^ \circ }}} - \dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \sqrt 3 \tan {{10}^ \circ }}} + \tan {10^ \circ }\]
On taking LCM, we get
\[ = \dfrac{{\left( {\sqrt 3 + \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right) - \left( {\sqrt 3 - \tan {{10}^ \circ }} \right)\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right) + \tan {{10}^ \circ }\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)}}{{\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)}}\]
On multiplication and using the formula \[(a - b)(a + b) = {a^2} - {b^2}\], we get
\[ = \dfrac{{\left( {\sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ }} \right) - \left( {\sqrt 3 - 3\tan {{10}^ \circ } - \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ }} \right) + \left( {\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }} \right)}}{{\left( {1 - 3{{\tan }^2}{{10}^ \circ }} \right)}}\]
On simplification, we get
\[ = \dfrac{{\sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ } - \sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } - \sqrt 3 {{\tan }^2}{{10}^ \circ } + \tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
On simplification, we get
\[ = \dfrac{{9\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
On taking \[3\] common from the numerator we get
\[ = 3 \times \dfrac{{\left( {3\tan {{10}^ \circ } - {{\tan }^3}{{10}^ \circ }} \right)}}{{1 - 3{{\tan }^2}{{10}^ \circ }}} - - - (1)\]
As we know, \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Using this we can write \[(1)\]
\[ = 3 \times \tan \left( {3 \times {{10}^ \circ }} \right)\]
\[ = 3\tan {30^ \circ }\]
Using \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\], we get
\[ \Rightarrow \tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = 3 \times \dfrac{1}{{\sqrt 3 }}\]
On simplification,
\[ \Rightarrow \tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 \]
Hence, proved that \[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 \].
Note: Here, we have written \[\tan {70^ \circ }\] as \[\tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and \[\tan {50^ \circ }\] as \[\tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\] because we have known values of only few trigonometric angles. So, we have written it in a way that it can be splitted into known angles and we can substitute direct values of these angles which will simplify the equation. Also note that, we have not changed \[\tan {10^ \circ }\] because there is no way to write the sum of this angle in a way that it can give standard angles where we can put direct results.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

