
Prove that: \[\tan {70^ \circ } = \tan {20^ \circ } + 2\tan {50^ \circ }\]
Answer
573.3k+ views
Hint: We will be needing certain properties of tan to solve this problem \[\cot \theta = \tan \left( {{{90}^ \circ } - \theta } \right) = \dfrac{1}{{\tan \theta }}\] and also \[\tan (\theta + \phi ) = \dfrac{{\tan \theta + \tan \phi }}{{1 - \tan \theta \tan \phi }}\] .
Complete step by step answer:
So we know that \[\tan (\theta + \phi ) = \dfrac{{\tan \theta + \tan \phi }}{{1 - \tan \theta \tan \phi }}\] and also \[\tan \left( {{{90}^ \circ } - \theta } \right) = \dfrac{1}{{\tan \theta }}\]
So \[\theta = {20^ \circ }\& \phi = {50^ \circ }\]
\[\begin{array}{l}
\therefore \tan {70^ \circ } = \tan ({20^ \circ } + {50^ \circ }) = \dfrac{{\tan {{20}^ \circ } + \tan {{50}^ \circ }}}{{1 - \tan {{20}^ \circ }\tan {{50}^ \circ }}}\\
\Rightarrow \tan {70^ \circ }(1 - \tan {20^ \circ }\tan {50^ \circ }) = \tan {20^ \circ } + \tan {50^ \circ }\\
\Rightarrow \tan {70^ \circ } - \tan {70^ \circ }\tan {20^ \circ }\tan {50^ \circ } = \tan {20^ \circ } + \tan {50^ \circ }\\
\end{array}\]
Now we can observe that \[\tan {70^ \circ }\tan {20^ \circ } = \tan ({90^ \circ } - {20^ \circ })\tan {20^ \circ } = 1\]
Putting this we get
\[\begin{array}{l}
\Rightarrow \tan {70^ \circ } - \tan {50^ \circ } = \tan {20^ \circ } + \tan {50^ \circ }\\
\Rightarrow \tan {70^ \circ } = \tan {20^ \circ } + 2\tan {50^ \circ }
\end{array}\]
Hence Proved.
Note:
Note that we can make a general formula, which would look something like; \[\tan \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right) + 2\tan \left( {2\theta - \dfrac{\pi }{2}} \right)\] or equivalently \[\tan \theta = \tan \phi + 2\tan (\theta - \phi ),\forall \theta + \phi = \dfrac{\pi }{2},\theta > \phi \].
Complete step by step answer:
So we know that \[\tan (\theta + \phi ) = \dfrac{{\tan \theta + \tan \phi }}{{1 - \tan \theta \tan \phi }}\] and also \[\tan \left( {{{90}^ \circ } - \theta } \right) = \dfrac{1}{{\tan \theta }}\]
So \[\theta = {20^ \circ }\& \phi = {50^ \circ }\]
\[\begin{array}{l}
\therefore \tan {70^ \circ } = \tan ({20^ \circ } + {50^ \circ }) = \dfrac{{\tan {{20}^ \circ } + \tan {{50}^ \circ }}}{{1 - \tan {{20}^ \circ }\tan {{50}^ \circ }}}\\
\Rightarrow \tan {70^ \circ }(1 - \tan {20^ \circ }\tan {50^ \circ }) = \tan {20^ \circ } + \tan {50^ \circ }\\
\Rightarrow \tan {70^ \circ } - \tan {70^ \circ }\tan {20^ \circ }\tan {50^ \circ } = \tan {20^ \circ } + \tan {50^ \circ }\\
\end{array}\]
Now we can observe that \[\tan {70^ \circ }\tan {20^ \circ } = \tan ({90^ \circ } - {20^ \circ })\tan {20^ \circ } = 1\]
Putting this we get
\[\begin{array}{l}
\Rightarrow \tan {70^ \circ } - \tan {50^ \circ } = \tan {20^ \circ } + \tan {50^ \circ }\\
\Rightarrow \tan {70^ \circ } = \tan {20^ \circ } + 2\tan {50^ \circ }
\end{array}\]
Hence Proved.
Note:
Note that we can make a general formula, which would look something like; \[\tan \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right) + 2\tan \left( {2\theta - \dfrac{\pi }{2}} \right)\] or equivalently \[\tan \theta = \tan \phi + 2\tan (\theta - \phi ),\forall \theta + \phi = \dfrac{\pi }{2},\theta > \phi \].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

