
Prove that \[\tan 3x.\tan 2x.\tan x = \tan 3x - \tan 3x - \tan x\]?
Answer
512.1k+ views
Hint: Here we have a trigonometric problem. Since here we have tangent function we need to know the tangent formulas. We take \[\tan 3x\] and we split the angle as a sum of two numbers. Then here we use the sum identity of tangent to prove the given problem. That is \[\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}\].
Complete step-by-step solution:
Now take
\[\tan 3x\].
We can write \[3x = 2x + x\], then
\[\tan \left( {3x} \right) = \tan \left( {2x + x} \right)\]
Now applying \[\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}\] , we have
\[\tan \left( {3x} \right) = \dfrac{{\tan 2x + \tan x}}{{1 - \tan 2x.\tan x}}\].
Now cross multiplying we have,
\[\tan \left( {3x} \right)\left( {1 - \tan 2x.\tan x} \right) = \tan 2x + \tan x\]
Expanding the brackets we have,
\[\tan 3x - \tan 3x.\tan 2x.\tan x = \tan 2x + \tan x\]
Now rearranging the equation we have,
\[\tan 3x - \tan 2x - \tan x = \tan 3x.\tan 2x.\tan x\]
Or
\[ \Rightarrow \tan 3x.\tan 2x.\tan x = \tan 3x - \tan 2x - \tan x\].
Hence proved.
Note: Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively. We also know the difference identity for the tangent function. That is \[\tan (x - y) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}\].
Complete step-by-step solution:
Now take
\[\tan 3x\].
We can write \[3x = 2x + x\], then
\[\tan \left( {3x} \right) = \tan \left( {2x + x} \right)\]
Now applying \[\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}\] , we have
\[\tan \left( {3x} \right) = \dfrac{{\tan 2x + \tan x}}{{1 - \tan 2x.\tan x}}\].
Now cross multiplying we have,
\[\tan \left( {3x} \right)\left( {1 - \tan 2x.\tan x} \right) = \tan 2x + \tan x\]
Expanding the brackets we have,
\[\tan 3x - \tan 3x.\tan 2x.\tan x = \tan 2x + \tan x\]
Now rearranging the equation we have,
\[\tan 3x - \tan 2x - \tan x = \tan 3x.\tan 2x.\tan x\]
Or
\[ \Rightarrow \tan 3x.\tan 2x.\tan x = \tan 3x - \tan 2x - \tan x\].
Hence proved.
Note: Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively. We also know the difference identity for the tangent function. That is \[\tan (x - y) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

