
Prove that ${{\tan }^{2}}A{{\sec }^{2}}B-{{\sec }^{2}}A{{\tan }^{2}}B={{\tan }^{2}}A-{{\tan }^{2}}B$.
Answer
615.6k+ views
Hint: Use the trigonometric identity ${{\sec }^{2}}x=1+{{\tan }^{2}}x$. Hence, express all sec terms in terms of tan and simplify. Alternatively, convert into sines and cosines and simplify.
Complete step-by-step solution -
Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine, tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
Observe that sine and cosecant are multiplicative inverses of each other, cosine and secant are multiplicative inverses of each other, and tangent and cotangent are multiplicative inverses of each other.
Hence $\sec x\cos x=1,\sin x\csc x=1$ and $\tan x\cot x=1$.
Trigonometric identities:
Pythagorean Identities:
${{\sin }^{2}}x+{{\cos }^{2}}x=1,{{\sec }^{2}}x=1+{{\tan }^{2}}x$ and ${{\csc }^{2}}x=1+{{\cot }^{2}}x$. These identities are a consequence of Pythagoras theorem in a right-angled triangle.
Now, we have
LHS $={{\tan }^{2}}A{{\sec }^{2}}B-{{\tan }^{2}}B{{\sec }^{2}}A$
Using ${{\sec }^{2}}x=1+{{\tan }^{2}}x$, we get
LHS $={{\tan }^{2}}A\left( 1+{{\tan }^{2}}B \right)-{{\tan }^{2}}B\left( 1+{{\tan }^{2}}A \right)$
Using the distributive property of multiplication over addition, i.e. a(b+c) = ab+ac, we get
LHS $={{\tan }^{2}}A+{{\tan }^{2}}A{{\tan }^{2}}B-{{\tan }^{2}}B-{{\tan }^{2}}A{{\tan }^{2}}B$
Hence, we have
LHS $={{\tan }^{2}}A-{{\tan }^{2}}B$
Hence LHS = RHS.
Hence proved.
Note: Alternatively, we have $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$.
Using the above-mentioned formulae, we get
LHS $=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}-\dfrac{{{\sin }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Taking ${{\cos }^{2}}A{{\cos }^{2}}B$ as LCM, we get
LHS $=\dfrac{{{\sin }^{2}}A-{{\sin }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Now, we know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$
Using, we get
LHS $=\dfrac{{{\sin }^{2}}A\left( {{\sin }^{2}}B+{{\cos }^{2}}B \right)-{{\sin }^{2}}B\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Using the distributive property of multiplication over addition, we get
LHS $=\dfrac{{{\sin }^{2}}A{{\cos }^{2}}B+{{\sin }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}B{{\cos }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
LHS $=\dfrac{{{\sin }^{2}}A{{\cos }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}-\dfrac{{{\sin }^{2}}B{{\cos }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Hence, we have
LHS $=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-\dfrac{{{\sin }^{2}}B}{{{\cos }^{2}}B}$
Using $\tan x=\dfrac{\sin x}{\cos x}$, we get
LHS $={{\tan }^{2}}A-{{\tan }^{2}}B$
Hence LHS = RHS and the given identity is proved.
Complete step-by-step solution -
Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine, tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
Observe that sine and cosecant are multiplicative inverses of each other, cosine and secant are multiplicative inverses of each other, and tangent and cotangent are multiplicative inverses of each other.
Hence $\sec x\cos x=1,\sin x\csc x=1$ and $\tan x\cot x=1$.
Trigonometric identities:
Pythagorean Identities:
${{\sin }^{2}}x+{{\cos }^{2}}x=1,{{\sec }^{2}}x=1+{{\tan }^{2}}x$ and ${{\csc }^{2}}x=1+{{\cot }^{2}}x$. These identities are a consequence of Pythagoras theorem in a right-angled triangle.
Now, we have
LHS $={{\tan }^{2}}A{{\sec }^{2}}B-{{\tan }^{2}}B{{\sec }^{2}}A$
Using ${{\sec }^{2}}x=1+{{\tan }^{2}}x$, we get
LHS $={{\tan }^{2}}A\left( 1+{{\tan }^{2}}B \right)-{{\tan }^{2}}B\left( 1+{{\tan }^{2}}A \right)$
Using the distributive property of multiplication over addition, i.e. a(b+c) = ab+ac, we get
LHS $={{\tan }^{2}}A+{{\tan }^{2}}A{{\tan }^{2}}B-{{\tan }^{2}}B-{{\tan }^{2}}A{{\tan }^{2}}B$
Hence, we have
LHS $={{\tan }^{2}}A-{{\tan }^{2}}B$
Hence LHS = RHS.
Hence proved.
Note: Alternatively, we have $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$.
Using the above-mentioned formulae, we get
LHS $=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}-\dfrac{{{\sin }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Taking ${{\cos }^{2}}A{{\cos }^{2}}B$ as LCM, we get
LHS $=\dfrac{{{\sin }^{2}}A-{{\sin }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Now, we know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$
Using, we get
LHS $=\dfrac{{{\sin }^{2}}A\left( {{\sin }^{2}}B+{{\cos }^{2}}B \right)-{{\sin }^{2}}B\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Using the distributive property of multiplication over addition, we get
LHS $=\dfrac{{{\sin }^{2}}A{{\cos }^{2}}B+{{\sin }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}B{{\cos }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
LHS $=\dfrac{{{\sin }^{2}}A{{\cos }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}-\dfrac{{{\sin }^{2}}B{{\cos }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}$
Hence, we have
LHS $=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-\dfrac{{{\sin }^{2}}B}{{{\cos }^{2}}B}$
Using $\tan x=\dfrac{\sin x}{\cos x}$, we get
LHS $={{\tan }^{2}}A-{{\tan }^{2}}B$
Hence LHS = RHS and the given identity is proved.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

