
Prove that: $\tan 225{}^\circ \cot 405{}^\circ +\tan 765{}^\circ \cot 675{}^\circ =0$.
Answer
596.7k+ views
Hint: For solving this problem, first converting the angle given in the problem statement in the range 0 to 90 degree by using suitable trigonometric properties. Now, we use the trigonometric table of values to prove the equivalence of both the sides.
Complete step-by-step answer:
Some of the important trigonometric formulas used in solving this problem are:
\[\begin{align}
& \tan \left( 360+\theta \right)=\tan \theta \\
& \tan \left( 360-\theta \right)=-\tan \theta \\
& \tan \left( 180-\theta \right)=-\tan \theta \\
& \tan \left( 180+\theta \right)=\tan \theta \\
& \cot \left( 360+\theta \right)=\cot \theta \\
& \cot \left( 360-\theta \right)=-\cot \theta \\
\end{align}\]
The specific value of functions of tan and cot which are useful are:
$\begin{align}
& \tan 45{}^\circ =1 \\
& \cot 45{}^\circ =1 \\
\end{align}$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the $\tan 225{}^\circ ,\cot 405{}^\circ ,\tan 765{}^\circ \text{ and }\cot 675{}^\circ $ by using the formula\[\cot \left( 360+\theta \right)=\cot \theta ,\cot \left( 360-\theta \right)=-\cot \theta ,\tan \left( 360+\theta \right)=\tan \theta \text{ and }\tan \left( 360-\theta \right)=-\tan \theta \].
$\begin{align}
& \tan 225{}^\circ =\tan \left( 360-135 \right){}^\circ \\
& \therefore \tan 225{}^\circ =-\tan \left( 135 \right){}^\circ \\
& \cot 405{}^\circ =\cot \left( 360+45 \right){}^\circ \\
& \therefore \cot 405{}^\circ =\cot \left( 45 \right){}^\circ \\
& \tan 765{}^\circ =\tan \left( 2\times 360+45 \right){}^\circ \\
& \therefore \tan 765{}^\circ =\tan \left( 45 \right){}^\circ \\
& \cot 675{}^\circ =\cot \left( 2\times 360-45 \right){}^\circ \\
& \therefore \cot 675{}^\circ =-\cot \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow -\tan 135{}^\circ \cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right)$
Now, we try to convert the above functions into the functions given in the form of table having respective angles between the range of 0 to 90 in degrees. For doing so, we use the formulas \[\tan \left( 180-\theta \right)=-\tan \theta \]. Now, we get
$\begin{align}
& \tan 135{}^\circ =\tan \left( 180-45 \right){}^\circ \\
& \therefore \tan 135{}^\circ =-\tan \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\begin{align}
& \Rightarrow -\left( -\tan \left( 45 \right){}^\circ \right)\cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right) \\
& \Rightarrow \tan 45{}^\circ \cot 45{}^\circ -\tan 45{}^\circ \cot 45{}^\circ \\
\end{align}$
Now, putting the values from the table, we get
$\begin{align}
& \Rightarrow 1\times 1-1\times 1 \\
& \Rightarrow 1-1 \\
& \Rightarrow 0 \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Complete step-by-step answer:
Some of the important trigonometric formulas used in solving this problem are:
\[\begin{align}
& \tan \left( 360+\theta \right)=\tan \theta \\
& \tan \left( 360-\theta \right)=-\tan \theta \\
& \tan \left( 180-\theta \right)=-\tan \theta \\
& \tan \left( 180+\theta \right)=\tan \theta \\
& \cot \left( 360+\theta \right)=\cot \theta \\
& \cot \left( 360-\theta \right)=-\cot \theta \\
\end{align}\]
The specific value of functions of tan and cot which are useful are:
$\begin{align}
& \tan 45{}^\circ =1 \\
& \cot 45{}^\circ =1 \\
\end{align}$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the $\tan 225{}^\circ ,\cot 405{}^\circ ,\tan 765{}^\circ \text{ and }\cot 675{}^\circ $ by using the formula\[\cot \left( 360+\theta \right)=\cot \theta ,\cot \left( 360-\theta \right)=-\cot \theta ,\tan \left( 360+\theta \right)=\tan \theta \text{ and }\tan \left( 360-\theta \right)=-\tan \theta \].
$\begin{align}
& \tan 225{}^\circ =\tan \left( 360-135 \right){}^\circ \\
& \therefore \tan 225{}^\circ =-\tan \left( 135 \right){}^\circ \\
& \cot 405{}^\circ =\cot \left( 360+45 \right){}^\circ \\
& \therefore \cot 405{}^\circ =\cot \left( 45 \right){}^\circ \\
& \tan 765{}^\circ =\tan \left( 2\times 360+45 \right){}^\circ \\
& \therefore \tan 765{}^\circ =\tan \left( 45 \right){}^\circ \\
& \cot 675{}^\circ =\cot \left( 2\times 360-45 \right){}^\circ \\
& \therefore \cot 675{}^\circ =-\cot \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow -\tan 135{}^\circ \cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right)$
Now, we try to convert the above functions into the functions given in the form of table having respective angles between the range of 0 to 90 in degrees. For doing so, we use the formulas \[\tan \left( 180-\theta \right)=-\tan \theta \]. Now, we get
$\begin{align}
& \tan 135{}^\circ =\tan \left( 180-45 \right){}^\circ \\
& \therefore \tan 135{}^\circ =-\tan \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\begin{align}
& \Rightarrow -\left( -\tan \left( 45 \right){}^\circ \right)\cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right) \\
& \Rightarrow \tan 45{}^\circ \cot 45{}^\circ -\tan 45{}^\circ \cot 45{}^\circ \\
\end{align}$
Now, putting the values from the table, we get
$\begin{align}
& \Rightarrow 1\times 1-1\times 1 \\
& \Rightarrow 1-1 \\
& \Rightarrow 0 \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

