
Prove that \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\] where \[xy < 1\]
Answer
575.7k+ views
Hint: In this question, we will proceed by writing the given data and then consider the R.H.S part of the given equation. Then use substitution method along with trigonometry formula to prove that the R.H.S and L.H.S are equal.
Complete step by step answer:
Here we have to prove that \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\] where \[xy < 1\]
Now consider the RHS part i.e., \[{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
Let \[x = \tan \theta \Rightarrow \theta = {\tan ^{ - 1}}x\] and \[y = \tan \alpha \Rightarrow \alpha = {\tan ^{ - 1}}y\]
So, we have RHS as
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\dfrac{{\tan \theta + \tan \alpha }}{{1 - \tan \theta \tan \alpha }}} \right)\]
We know that, \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\tan \left( {\theta + \alpha } \right)} \right)\]
Also, we know that \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = \theta + \alpha \]
Resubstituting the values of \[\theta \] and \[\alpha \], we have
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y \\
\therefore {\text{R}}{\text{.H}}{\text{.S}} = {\text{L}}{\text{.H}}{\text{.S}} \\
\]
Hence proved.
Note: Here we have used the trigonometry formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, for solving these types of problems always remember the formulae in trigonometry and inverse trigonometry.
Complete step by step answer:
Here we have to prove that \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\] where \[xy < 1\]
Now consider the RHS part i.e., \[{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
Let \[x = \tan \theta \Rightarrow \theta = {\tan ^{ - 1}}x\] and \[y = \tan \alpha \Rightarrow \alpha = {\tan ^{ - 1}}y\]
So, we have RHS as
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\dfrac{{\tan \theta + \tan \alpha }}{{1 - \tan \theta \tan \alpha }}} \right)\]
We know that, \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\tan \left( {\theta + \alpha } \right)} \right)\]
Also, we know that \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = \theta + \alpha \]
Resubstituting the values of \[\theta \] and \[\alpha \], we have
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y \\
\therefore {\text{R}}{\text{.H}}{\text{.S}} = {\text{L}}{\text{.H}}{\text{.S}} \\
\]
Hence proved.
Note: Here we have used the trigonometry formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, for solving these types of problems always remember the formulae in trigonometry and inverse trigonometry.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

