
Prove that \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\] where \[xy < 1\]
Answer
509.7k+ views
Hint: In this question, we will proceed by writing the given data and then consider the R.H.S part of the given equation. Then use substitution method along with trigonometry formula to prove that the R.H.S and L.H.S are equal.
Complete step by step answer:
Here we have to prove that \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\] where \[xy < 1\]
Now consider the RHS part i.e., \[{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
Let \[x = \tan \theta \Rightarrow \theta = {\tan ^{ - 1}}x\] and \[y = \tan \alpha \Rightarrow \alpha = {\tan ^{ - 1}}y\]
So, we have RHS as
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\dfrac{{\tan \theta + \tan \alpha }}{{1 - \tan \theta \tan \alpha }}} \right)\]
We know that, \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\tan \left( {\theta + \alpha } \right)} \right)\]
Also, we know that \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = \theta + \alpha \]
Resubstituting the values of \[\theta \] and \[\alpha \], we have
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y \\
\therefore {\text{R}}{\text{.H}}{\text{.S}} = {\text{L}}{\text{.H}}{\text{.S}} \\
\]
Hence proved.
Note: Here we have used the trigonometry formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, for solving these types of problems always remember the formulae in trigonometry and inverse trigonometry.
Complete step by step answer:
Here we have to prove that \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\] where \[xy < 1\]
Now consider the RHS part i.e., \[{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
Let \[x = \tan \theta \Rightarrow \theta = {\tan ^{ - 1}}x\] and \[y = \tan \alpha \Rightarrow \alpha = {\tan ^{ - 1}}y\]
So, we have RHS as
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\dfrac{{\tan \theta + \tan \alpha }}{{1 - \tan \theta \tan \alpha }}} \right)\]
We know that, \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\tan \left( {\theta + \alpha } \right)} \right)\]
Also, we know that \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, using this formula we have
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = \theta + \alpha \]
Resubstituting the values of \[\theta \] and \[\alpha \], we have
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y \\
\therefore {\text{R}}{\text{.H}}{\text{.S}} = {\text{L}}{\text{.H}}{\text{.S}} \\
\]
Hence proved.
Note: Here we have used the trigonometry formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[{\tan ^{ - 1}}\left( {\tan A} \right) = A\]. So, for solving these types of problems always remember the formulae in trigonometry and inverse trigonometry.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
