
Prove that $\tan {15^ \circ } + \cot {15^ \circ } = 4$.
Answer
522.3k+ views
Hint: In order to find the value of $\tan {15^ \circ } + \cot {15^ \circ } = 4$, convert $\tan {15^ \circ }$ in terms of $\cot {15^ \circ }$, as we know that $\tan {15^ \circ } = \dfrac{1}{{\cot {{15}^ \circ }}}$, then multiply and divide the second operand by $\cot {15^ \circ }$, in order to have a common denominator, then solve the numerator above and similarly, applying trigonometric identities solve it further.
Formula used:
$\tan x = \dfrac{1}{{\cot x}}$
\[\sin {30^ \circ } = \dfrac{1}{2}\]
\[2\sin x\cos x = \sin 2x\]
\[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[\cos ecx = \dfrac{1}{{\sin x}}\]
\[1 + {\cot ^2}x = \cos e{c^2}x\]
Complete step by step solution:
We are given to prove $\tan {15^ \circ } + \cot {15^ \circ } = 4$.
We will start with the Left-hand side equation, then solving it further to prove it as equal to the right-hand side.
Taking the Left-hand side equation, $\tan {15^ \circ } + \cot {15^ \circ }$.
From trigonometric identities, we know that $\tan x = \dfrac{1}{{\cot x}}$, so applying this in the above equation, we can write it as:
\[\tan {15^ \circ } + \cot {15^ \circ } = \dfrac{1}{{\cot {{15}^ \circ }}} + \cot {15^ \circ }\]
Multiplying and dividing the second operand with $\cot {15^ \circ }$, in order to have a common denominator for both the operands, and we get:
\[
\dfrac{1}{{\cot {{15}^ \circ }}} + \cot {15^ \circ } \\
\Rightarrow \dfrac{1}{{\cot {{15}^ \circ }}} + \cot {15^ \circ }\dfrac{{\cot {{15}^ \circ }}}{{\cot {{15}^ \circ }}} \\
\Rightarrow \dfrac{1}{{\cot {{15}^ \circ }}} + \dfrac{{{{\cot }^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}} \\
\]
Since, the denominator is same, so taking the denominator common:
\[\dfrac{{1 + {{\cot }^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}}\]
From the trigonometric identities, we know that \[1 + {\cot ^2}x = \cos e{c^2}x\].
So, substituting \[1 + {\cot ^2}{15^ \circ } = \cos e{c^2}{15^ \circ }\] in the above equation, we get:
\[\dfrac{{1 + {{\cot }^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}} = \dfrac{{\cos e{c^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}}\]
From, some more trigonometric identities, we know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] and \[\cos ecx = \dfrac{1}{{\sin x}}\].
So, applying these identities above and we get:
\[
\dfrac{{\cos e{c^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}} \\
\Rightarrow \dfrac{{{{\left( {\dfrac{1}{{\sin {{15}^ \circ }}}} \right)}^2}}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}}}} \\
\Rightarrow \dfrac{{\dfrac{1}{{{{\sin }^2}{{15}^ \circ }}}}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}}}} \\
\]
Multiplying the numerator and denominator with \[{\sin ^2}{15^ \circ }\]:
\[
\dfrac{{\dfrac{1}{{{{\sin }^2}{{15}^ \circ }}}}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}}}} \\
\Rightarrow \dfrac{{\dfrac{1}{{{{\sin }^2}{{15}^ \circ }}} \times {{\sin }^2}{{15}^ \circ }}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}} \times {{\sin }^2}{{15}^ \circ }}} \\
\Rightarrow \dfrac{1}{{\cos {{15}^ \circ }\sin {{15}^ \circ }}} \\
\]
Multiplying the numerator and denominator with \[2\], and we get:
\[\dfrac{1}{{\cos {{15}^ \circ }\sin {{15}^ \circ }}} = \dfrac{2}{{2\sin {{15}^ \circ }\cos {{15}^ \circ }}}\]
From trigonometric angles and sub-angles, we know that \[2\sin x\cos x = \sin 2x\].
Applying this identity in the above equation, and we get:
\[\dfrac{2}{{2\sin {{15}^ \circ }\cos {{15}^ \circ }}} = \dfrac{2}{{\sin 2\left( {{{15}^ \circ }} \right)}} = \dfrac{2}{{\sin {{30}^ \circ }}}\]
Now, as we know that the value of \[\sin {30^ \circ } = \dfrac{1}{2}\].
So, substituting \[\sin {30^ \circ } = \dfrac{1}{2}\]in the above equation, and we get:
\[\dfrac{2}{{\sin {{30}^ \circ }}} = \dfrac{2}{{\dfrac{1}{2}}}\]
Multiplying the numerator and denominator by \[2\] in order to cancel out the denominator, and we get:
\[
\dfrac{2}{{\sin {{30}^ \circ }}} = \dfrac{2}{{\dfrac{1}{2}}} \\
\Rightarrow \dfrac{{2 \times 2}}{{\dfrac{1}{2} \times 2}} = \dfrac{4}{1} = 4 \\
\Rightarrow \dfrac{2}{{\sin {{30}^ \circ }}} = 4 \\
\]
Which is equal to the Right- hand side value, that means $\tan {15^ \circ } + \cot {15^ \circ } = 4$.
Hence, we prove that $\tan {15^ \circ } + \cot {15^ \circ } = 4$.
Note:
> It’s important to remember the trigonometric formulas to solve this kind of trigonometric equations.
> We can directly solve the equation by putting the value of \[\tan {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\] and \[\cot {15^ \circ } = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}\] in the equation and then solving it further.
Formula used:
$\tan x = \dfrac{1}{{\cot x}}$
\[\sin {30^ \circ } = \dfrac{1}{2}\]
\[2\sin x\cos x = \sin 2x\]
\[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[\cos ecx = \dfrac{1}{{\sin x}}\]
\[1 + {\cot ^2}x = \cos e{c^2}x\]
Complete step by step solution:
We are given to prove $\tan {15^ \circ } + \cot {15^ \circ } = 4$.
We will start with the Left-hand side equation, then solving it further to prove it as equal to the right-hand side.
Taking the Left-hand side equation, $\tan {15^ \circ } + \cot {15^ \circ }$.
From trigonometric identities, we know that $\tan x = \dfrac{1}{{\cot x}}$, so applying this in the above equation, we can write it as:
\[\tan {15^ \circ } + \cot {15^ \circ } = \dfrac{1}{{\cot {{15}^ \circ }}} + \cot {15^ \circ }\]
Multiplying and dividing the second operand with $\cot {15^ \circ }$, in order to have a common denominator for both the operands, and we get:
\[
\dfrac{1}{{\cot {{15}^ \circ }}} + \cot {15^ \circ } \\
\Rightarrow \dfrac{1}{{\cot {{15}^ \circ }}} + \cot {15^ \circ }\dfrac{{\cot {{15}^ \circ }}}{{\cot {{15}^ \circ }}} \\
\Rightarrow \dfrac{1}{{\cot {{15}^ \circ }}} + \dfrac{{{{\cot }^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}} \\
\]
Since, the denominator is same, so taking the denominator common:
\[\dfrac{{1 + {{\cot }^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}}\]
From the trigonometric identities, we know that \[1 + {\cot ^2}x = \cos e{c^2}x\].
So, substituting \[1 + {\cot ^2}{15^ \circ } = \cos e{c^2}{15^ \circ }\] in the above equation, we get:
\[\dfrac{{1 + {{\cot }^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}} = \dfrac{{\cos e{c^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}}\]
From, some more trigonometric identities, we know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] and \[\cos ecx = \dfrac{1}{{\sin x}}\].
So, applying these identities above and we get:
\[
\dfrac{{\cos e{c^2}{{15}^ \circ }}}{{\cot {{15}^ \circ }}} \\
\Rightarrow \dfrac{{{{\left( {\dfrac{1}{{\sin {{15}^ \circ }}}} \right)}^2}}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}}}} \\
\Rightarrow \dfrac{{\dfrac{1}{{{{\sin }^2}{{15}^ \circ }}}}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}}}} \\
\]
Multiplying the numerator and denominator with \[{\sin ^2}{15^ \circ }\]:
\[
\dfrac{{\dfrac{1}{{{{\sin }^2}{{15}^ \circ }}}}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}}}} \\
\Rightarrow \dfrac{{\dfrac{1}{{{{\sin }^2}{{15}^ \circ }}} \times {{\sin }^2}{{15}^ \circ }}}{{\dfrac{{\cos {{15}^ \circ }}}{{\sin {{15}^ \circ }}} \times {{\sin }^2}{{15}^ \circ }}} \\
\Rightarrow \dfrac{1}{{\cos {{15}^ \circ }\sin {{15}^ \circ }}} \\
\]
Multiplying the numerator and denominator with \[2\], and we get:
\[\dfrac{1}{{\cos {{15}^ \circ }\sin {{15}^ \circ }}} = \dfrac{2}{{2\sin {{15}^ \circ }\cos {{15}^ \circ }}}\]
From trigonometric angles and sub-angles, we know that \[2\sin x\cos x = \sin 2x\].
Applying this identity in the above equation, and we get:
\[\dfrac{2}{{2\sin {{15}^ \circ }\cos {{15}^ \circ }}} = \dfrac{2}{{\sin 2\left( {{{15}^ \circ }} \right)}} = \dfrac{2}{{\sin {{30}^ \circ }}}\]
Now, as we know that the value of \[\sin {30^ \circ } = \dfrac{1}{2}\].
So, substituting \[\sin {30^ \circ } = \dfrac{1}{2}\]in the above equation, and we get:
\[\dfrac{2}{{\sin {{30}^ \circ }}} = \dfrac{2}{{\dfrac{1}{2}}}\]
Multiplying the numerator and denominator by \[2\] in order to cancel out the denominator, and we get:
\[
\dfrac{2}{{\sin {{30}^ \circ }}} = \dfrac{2}{{\dfrac{1}{2}}} \\
\Rightarrow \dfrac{{2 \times 2}}{{\dfrac{1}{2} \times 2}} = \dfrac{4}{1} = 4 \\
\Rightarrow \dfrac{2}{{\sin {{30}^ \circ }}} = 4 \\
\]
Which is equal to the Right- hand side value, that means $\tan {15^ \circ } + \cot {15^ \circ } = 4$.
Hence, we prove that $\tan {15^ \circ } + \cot {15^ \circ } = 4$.
Note:
> It’s important to remember the trigonometric formulas to solve this kind of trigonometric equations.
> We can directly solve the equation by putting the value of \[\tan {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\] and \[\cot {15^ \circ } = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}\] in the equation and then solving it further.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

