
Prove that $\sqrt {\dfrac{{1 - \cos A}}{{1 + \cos A}}} + \sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = 2\cos ecA$
Answer
611.4k+ views
Hint: To solve this problem we need trigonometry which helps to prove L.H.S=R.H.S. We need to know the rationalization concept as question demands.
Complete step-by-step answer:
Let us take the L.H.S part
$ \Rightarrow \sqrt {\dfrac{{1 - \cos A}}{{1 + \cos A}}} + \sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} $
Now on rationalizing the denominators by multiplying suitable factors, we will get
$ \Rightarrow \sqrt {\dfrac{{1 - \cos A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}} + \sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}}} $
\[\begin{gathered}
\Rightarrow \sqrt {\dfrac{{{{(1 - \cos A)}^2}}}{{(1 + \cos A)(1 - \cos A)}}} + \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{(1 - \cos A)(1 + \cos A)}}} \\
\Rightarrow \sqrt {\dfrac{{{{(1 - \cos A)}^2}}}{{({1^2} - {{\cos }^2}A)}}} + \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{({1^2} - {{\cos }^2}A)}}} \\
\end{gathered} \]
Here in the above term of numerator square root and square get cancels and in denominator we know that $\sin A = \sqrt {1 - {{\cos }^2}A} $
On simplifying the above term we get
$ \Rightarrow \dfrac{{1 - \cos A}}{{sinA}} + \dfrac{{1 + \cos A}}{{\sin A}}$
$\begin{gathered}
\Rightarrow \dfrac{{1 - \cos A + 1 + \cos A}}{{\sin A}} \\
\Rightarrow \dfrac{2}{{\sin A}} \\
\end{gathered} $
We know that $\sin A = \dfrac{1}{{\cos ecA}}$ now on replacing the term we get it as
$\begin{gathered}
\Rightarrow 2\cos ecA \\
\Rightarrow R.H.S \\
\end{gathered} $
Hence we have proved L.H.S=R.H.S
NOTE: In this problem we have taken the L.H.S part and rationalize the denominator by using its multiplying suitable factor. And by using the basic formulas and conversion we got the R.H.S value. Hence we have proved that L.H.S=R.H.S.
Complete step-by-step answer:
Let us take the L.H.S part
$ \Rightarrow \sqrt {\dfrac{{1 - \cos A}}{{1 + \cos A}}} + \sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} $
Now on rationalizing the denominators by multiplying suitable factors, we will get
$ \Rightarrow \sqrt {\dfrac{{1 - \cos A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}} + \sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}}} $
\[\begin{gathered}
\Rightarrow \sqrt {\dfrac{{{{(1 - \cos A)}^2}}}{{(1 + \cos A)(1 - \cos A)}}} + \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{(1 - \cos A)(1 + \cos A)}}} \\
\Rightarrow \sqrt {\dfrac{{{{(1 - \cos A)}^2}}}{{({1^2} - {{\cos }^2}A)}}} + \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{({1^2} - {{\cos }^2}A)}}} \\
\end{gathered} \]
Here in the above term of numerator square root and square get cancels and in denominator we know that $\sin A = \sqrt {1 - {{\cos }^2}A} $
On simplifying the above term we get
$ \Rightarrow \dfrac{{1 - \cos A}}{{sinA}} + \dfrac{{1 + \cos A}}{{\sin A}}$
$\begin{gathered}
\Rightarrow \dfrac{{1 - \cos A + 1 + \cos A}}{{\sin A}} \\
\Rightarrow \dfrac{2}{{\sin A}} \\
\end{gathered} $
We know that $\sin A = \dfrac{1}{{\cos ecA}}$ now on replacing the term we get it as
$\begin{gathered}
\Rightarrow 2\cos ecA \\
\Rightarrow R.H.S \\
\end{gathered} $
Hence we have proved L.H.S=R.H.S
NOTE: In this problem we have taken the L.H.S part and rationalize the denominator by using its multiplying suitable factor. And by using the basic formulas and conversion we got the R.H.S value. Hence we have proved that L.H.S=R.H.S.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

