Answer
Verified
447.3k+ views
Hint: In this question, we will use the contradiction method of solving the question. First assume that the given number is a rational number of the $\dfrac{a}{b}$ where a and b have no common factor other than 1 and b$ \ne $ 0. After this we follow a procedure to contradict our assumption.
Complete step-by-step answer:
The given number is$\sqrt 2 $.
Now suppose that the given number is a rational number of the form $\dfrac{{\text{a}}}{{\text{b}}}$, where a and b have no common factor other than 1 and b$ \ne $ 0.
$\therefore $ .$\sqrt 2 $ =$\dfrac{{\text{a}}}{{\text{b}}}$
On squaring both sides, we get:
\[{\left( {\sqrt 2 } \right)^2} = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
On further solving, we have:
\[ \Rightarrow 2 = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
\[ \Rightarrow 2{{\text{b}}^2} = {{\text{a}}^2}\]
$\because $ 2 divides ${{\text{b}}^2}$.
$\therefore $ It will also divide ${{\text{a}}^2}$and hence it will divide ‘a’.
Now, let a =2k
Putting the value of ‘a’ in above equation, we get:
$2{{\text{b}}^2} = {\left( {2{\text{k}}} \right)^2}$
On further solving, we get:
$2{{\text{b}}^2} = 4{{\text{k}}^2}$
$ \Rightarrow {{\text{b}}^2} = 2{{\text{k}}^2}$
$\because $ 2 divides ${{\text{k}}^2}$.
$\therefore $ It will also divide ${{\text{b}}^2}$and hence it will divide ‘b’.
Therefore, we can say that 2 is the common factor of both ‘a’ and ‘b’.
This contradicts our assumption that ‘a’ and ‘b’ have no common factor other than 1
Hence, the number $\sqrt 2 $ is an irrational number.
Note: Solving such forms of problems requires a determined approach of making an assumption which is the exact opposite of what is being asked and then contradicting that assumption therefore reaching to the proof. You should know that the product of a rational and an irrational number is always irrational. For example- $2\sqrt 2 $ is an irrational number.
Complete step-by-step answer:
The given number is$\sqrt 2 $.
Now suppose that the given number is a rational number of the form $\dfrac{{\text{a}}}{{\text{b}}}$, where a and b have no common factor other than 1 and b$ \ne $ 0.
$\therefore $ .$\sqrt 2 $ =$\dfrac{{\text{a}}}{{\text{b}}}$
On squaring both sides, we get:
\[{\left( {\sqrt 2 } \right)^2} = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
On further solving, we have:
\[ \Rightarrow 2 = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
\[ \Rightarrow 2{{\text{b}}^2} = {{\text{a}}^2}\]
$\because $ 2 divides ${{\text{b}}^2}$.
$\therefore $ It will also divide ${{\text{a}}^2}$and hence it will divide ‘a’.
Now, let a =2k
Putting the value of ‘a’ in above equation, we get:
$2{{\text{b}}^2} = {\left( {2{\text{k}}} \right)^2}$
On further solving, we get:
$2{{\text{b}}^2} = 4{{\text{k}}^2}$
$ \Rightarrow {{\text{b}}^2} = 2{{\text{k}}^2}$
$\because $ 2 divides ${{\text{k}}^2}$.
$\therefore $ It will also divide ${{\text{b}}^2}$and hence it will divide ‘b’.
Therefore, we can say that 2 is the common factor of both ‘a’ and ‘b’.
This contradicts our assumption that ‘a’ and ‘b’ have no common factor other than 1
Hence, the number $\sqrt 2 $ is an irrational number.
Note: Solving such forms of problems requires a determined approach of making an assumption which is the exact opposite of what is being asked and then contradicting that assumption therefore reaching to the proof. You should know that the product of a rational and an irrational number is always irrational. For example- $2\sqrt 2 $ is an irrational number.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE