
Prove that \[\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a\].
Answer
490.2k+ views
Hint: We will take the term on the right-hand side and we will use the identity i.e., \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\]. Then we will put these values in the right-hand side and simplify. At last, we will put \[\sinh \left( {a + b} \right) = \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2}\] to prove \[\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a\].
Complete step by step answer:
As we know that \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\].
Similarly, \[\cosh a = \dfrac{{{e^a} + {e^{ - a}}}}{2}\], \[\cosh b = \dfrac{{{e^b} + {e^{ - b}}}}{2}\], \[\sinh a = \dfrac{{{e^a} - {e^{ - a}}}}{2}\] and \[\sinh b = \dfrac{{{e^b} - {e^{ - b}}}}{2}\].
Here, \[{\text{RHS}} = \sinh a\cosh b + \sinh b\cosh a\]
Putting the values in the right-hand side, we get
\[ \Rightarrow {\text{RHS}} = \sinh a\cosh b + \sinh b\cosh a\]
\[ = \left( {\dfrac{{{e^a} - {e^{ - a}}}}{2}} \right)\left( {\dfrac{{{e^b} + {e^{ - b}}}}{2}} \right) + \left( {\dfrac{{{e^b} - {e^{ - b}}}}{2}} \right)\left( {\dfrac{{{e^a} + {e^{ - a}}}}{2}} \right)\]
On multiplying the terms, we get
\[ = \dfrac{{{e^{a + b}} + {e^{a - b}} - {e^{b - a}} - {e^{ - \left( {a + b} \right)}}}}{4} + \dfrac{{{e^{a + b}} + {e^{b - a}} - {e^{a - b}} - {e^{ - \left( {a + b} \right)}}}}{4}\]
On taking LCM and common, we get
\[ = \dfrac{1}{4}\left( {{e^{a + b}} + {e^{a - b}} - {e^{b - a}} - {e^{ - \left( {a + b} \right)}} + {e^{a + b}} + {e^{b - a}} - {e^{a - b}} - {e^{ - \left( {a + b} \right)}}} \right)\]
Cancelling the same terms with opposite sign, we get
\[ = \dfrac{1}{4}\left( {{e^{a + b}} - {e^{ - \left( {a + b} \right)}} + {e^{a + b}} - {e^{ - \left( {a + b} \right)}}} \right)\]
\[ = \dfrac{1}{4}\left( {2{e^{a + b}} - 2{e^{ - \left( {a + b} \right)}}} \right)\]
Taking two common, we get
\[ = \dfrac{2}{4}\left( {{e^{a + b}} - {e^{ - \left( {a + b} \right)}}} \right)\]
\[ = \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2}\]
As \[\sinh \left( {a + b} \right) = \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2}\]. Using this, we get right hand side as \[\sinh \left( {a + b} \right)\] i.e.,
\[ \Rightarrow {\text{RHS}} = \sinh \left( {a + b} \right)\], which is equal to the left-hand side.
Hence, proved that \[\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a\].
Note:
The hyperbolic trigonometric functions consider the area as their argument, known as ‘the hyperbolic angle’. Hyperbolic functions share almost similar properties to trigonometric functions like in the trigonometry, the derivative of \[\sin x\] is \[\cos x\] and \[\cos x\] is \[ - \sin x\] and the derivative of \[\sinh x\] is \[\cosh x\] and \[\cosh x\] is \[ \sinh x\].
Complete step by step answer:
As we know that \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\].
Similarly, \[\cosh a = \dfrac{{{e^a} + {e^{ - a}}}}{2}\], \[\cosh b = \dfrac{{{e^b} + {e^{ - b}}}}{2}\], \[\sinh a = \dfrac{{{e^a} - {e^{ - a}}}}{2}\] and \[\sinh b = \dfrac{{{e^b} - {e^{ - b}}}}{2}\].
Here, \[{\text{RHS}} = \sinh a\cosh b + \sinh b\cosh a\]
Putting the values in the right-hand side, we get
\[ \Rightarrow {\text{RHS}} = \sinh a\cosh b + \sinh b\cosh a\]
\[ = \left( {\dfrac{{{e^a} - {e^{ - a}}}}{2}} \right)\left( {\dfrac{{{e^b} + {e^{ - b}}}}{2}} \right) + \left( {\dfrac{{{e^b} - {e^{ - b}}}}{2}} \right)\left( {\dfrac{{{e^a} + {e^{ - a}}}}{2}} \right)\]
On multiplying the terms, we get
\[ = \dfrac{{{e^{a + b}} + {e^{a - b}} - {e^{b - a}} - {e^{ - \left( {a + b} \right)}}}}{4} + \dfrac{{{e^{a + b}} + {e^{b - a}} - {e^{a - b}} - {e^{ - \left( {a + b} \right)}}}}{4}\]
On taking LCM and common, we get
\[ = \dfrac{1}{4}\left( {{e^{a + b}} + {e^{a - b}} - {e^{b - a}} - {e^{ - \left( {a + b} \right)}} + {e^{a + b}} + {e^{b - a}} - {e^{a - b}} - {e^{ - \left( {a + b} \right)}}} \right)\]
Cancelling the same terms with opposite sign, we get
\[ = \dfrac{1}{4}\left( {{e^{a + b}} - {e^{ - \left( {a + b} \right)}} + {e^{a + b}} - {e^{ - \left( {a + b} \right)}}} \right)\]
\[ = \dfrac{1}{4}\left( {2{e^{a + b}} - 2{e^{ - \left( {a + b} \right)}}} \right)\]
Taking two common, we get
\[ = \dfrac{2}{4}\left( {{e^{a + b}} - {e^{ - \left( {a + b} \right)}}} \right)\]
\[ = \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2}\]
As \[\sinh \left( {a + b} \right) = \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2}\]. Using this, we get right hand side as \[\sinh \left( {a + b} \right)\] i.e.,
\[ \Rightarrow {\text{RHS}} = \sinh \left( {a + b} \right)\], which is equal to the left-hand side.
Hence, proved that \[\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a\].
Note:
The hyperbolic trigonometric functions consider the area as their argument, known as ‘the hyperbolic angle’. Hyperbolic functions share almost similar properties to trigonometric functions like in the trigonometry, the derivative of \[\sin x\] is \[\cos x\] and \[\cos x\] is \[ - \sin x\] and the derivative of \[\sinh x\] is \[\cosh x\] and \[\cosh x\] is \[ \sinh x\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

