
Prove that: $ {(\sin A + \sec A)^2} + {(\cos A + \operatorname{cosec} A)^2} = {(1 + \sec A\cos ecA)^2} $
Answer
568.5k+ views
Hint: First of all we will use the expansion of the whole square formula and then simplify the equation. We will also use the equivalent trigonometric functions and replace for the resultant solution.
Complete step-by-step answer:
Take the given left hand side of the equation –
$ LHS = {(\sin A + \sec A)^2} + {(\cos A + \operatorname{cosec} A)^2} $
Open the bracket using the identity for the whole square - $ {(a + b)^2} = {a^2} + 2ab + {b^2} $
LHS $ = {\sin ^2}A + 2\sin A\sec A + {\sec ^2}A + {\cos ^2}A + 2\cos A\operatorname{cosec} A + \cos e{c^2}A $
The above equation can be re-written as -
LHS $ = \underline {{{\sin }^2}A + {{\cos }^2}A} + 2\sin A\sec A + {\sec ^2}A + 2\cos A\operatorname{cosec} A + \cos e{c^2}A $
We know that - $ {\sin ^2}A + {\cos ^2}A = 1 $ place in the above equation and simplify the equation –
LHS $ = 1 + 2\sin A\sec A + {\sec ^2}A + 2\cos A\cos ecA + \cos e{c^2}A $
We know that the secant is the inverse of cosine function. So place, $ \sec A = \dfrac{1}{{\cos A}} $ and $ \cos ecA = \dfrac{1}{{\sin A}} $ in the above equation.
LHS $ = 1 + 2\sin A\dfrac{1}{{\cos A}} + \dfrac{1}{{co{s^2}A}} + 2\cos A\dfrac{1}{{\sin A}} + \dfrac{1}{{{{\sin }^2}A}} $
The above equation can be arranged and re-written as –
LHS $ = 1 + \dfrac{{2\sin A}}{{\cos A}} + \dfrac{1}{{co{s^2}A}} + \dfrac{{2\cos A}}{{\sin A}} + \dfrac{1}{{{{\sin }^2}A}} $
Again,
LHS $ = 1 + \dfrac{1}{{{{\sin }^2}A}} + \dfrac{1}{{co{s^2}A}} + \underline {\dfrac{{2\cos A}}{{\sin A}} + \dfrac{{2\sin A}}{{\cos A}}} $
Take out the common multiple from the paired term –
LHS $ = 1 + \left( {\underline {\dfrac{1}{{{{\sin }^2}A}} + \dfrac{1}{{co{s^2}A}}} } \right) + 2\left( {\underline {\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}} } \right) $
Take LCM (Least common Multiple ) in the above two paired terms and then simplify.
LHS $ = 1 + \left( {\dfrac{{co{s^2}A + {{\sin }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + 2\left( {\dfrac{{\cos A\cos A + \sin A\sin A}}{{\sin A\cos A}}} \right) $
Use the identity that - $ {\sin ^2}A + {\cos ^2}A = 1 $ place in the above equation and simplify the equation –
LHS $ = 1 + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + 2\left( {\dfrac{{co{s^2}A + {{\sin }^2}A}}{{\sin A\cos A}}} \right) $
Again using the same identity –
LHS $ = 1 + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + 2\left( {\dfrac{1}{{\sin A\cos A}}} \right) $
It can be re-written as –
LHS $ = 1 + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + \left( {\dfrac{2}{{\sin A\cos A}}} \right) $
LHS $ = 1 + \left( {\dfrac{2}{{\sin A\cos A}}} \right) + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) $
The above equation satisfies the whole square of two terms - $ {(a + b)^2} = {a^2} + 2ab + {b^2} $
LHS $ = {\left( {1 + \dfrac{1}{{\sin A\cos A}}} \right)^2} $
Again convert the above equation in the form of the required answer. $ \cos ecA = \dfrac{1}{{\sin A}},\sec A = \dfrac{1}{{\cos A}} $
LHS $ = {\left( {1 + \cos ecA\sec A} \right)^2} $
LHS $ = $ RHS
Hence, proved.
Note: Always remember that whenever we have to prove the trigonometric relation, if in between you do not find any identities and further simplifications convert all the given functions in terms of cosine and sine and then use the identity and simplify. Then for the final answer convert the solution as per requirement .
Complete step-by-step answer:
Take the given left hand side of the equation –
$ LHS = {(\sin A + \sec A)^2} + {(\cos A + \operatorname{cosec} A)^2} $
Open the bracket using the identity for the whole square - $ {(a + b)^2} = {a^2} + 2ab + {b^2} $
LHS $ = {\sin ^2}A + 2\sin A\sec A + {\sec ^2}A + {\cos ^2}A + 2\cos A\operatorname{cosec} A + \cos e{c^2}A $
The above equation can be re-written as -
LHS $ = \underline {{{\sin }^2}A + {{\cos }^2}A} + 2\sin A\sec A + {\sec ^2}A + 2\cos A\operatorname{cosec} A + \cos e{c^2}A $
We know that - $ {\sin ^2}A + {\cos ^2}A = 1 $ place in the above equation and simplify the equation –
LHS $ = 1 + 2\sin A\sec A + {\sec ^2}A + 2\cos A\cos ecA + \cos e{c^2}A $
We know that the secant is the inverse of cosine function. So place, $ \sec A = \dfrac{1}{{\cos A}} $ and $ \cos ecA = \dfrac{1}{{\sin A}} $ in the above equation.
LHS $ = 1 + 2\sin A\dfrac{1}{{\cos A}} + \dfrac{1}{{co{s^2}A}} + 2\cos A\dfrac{1}{{\sin A}} + \dfrac{1}{{{{\sin }^2}A}} $
The above equation can be arranged and re-written as –
LHS $ = 1 + \dfrac{{2\sin A}}{{\cos A}} + \dfrac{1}{{co{s^2}A}} + \dfrac{{2\cos A}}{{\sin A}} + \dfrac{1}{{{{\sin }^2}A}} $
Again,
LHS $ = 1 + \dfrac{1}{{{{\sin }^2}A}} + \dfrac{1}{{co{s^2}A}} + \underline {\dfrac{{2\cos A}}{{\sin A}} + \dfrac{{2\sin A}}{{\cos A}}} $
Take out the common multiple from the paired term –
LHS $ = 1 + \left( {\underline {\dfrac{1}{{{{\sin }^2}A}} + \dfrac{1}{{co{s^2}A}}} } \right) + 2\left( {\underline {\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}} } \right) $
Take LCM (Least common Multiple ) in the above two paired terms and then simplify.
LHS $ = 1 + \left( {\dfrac{{co{s^2}A + {{\sin }^2}A}}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + 2\left( {\dfrac{{\cos A\cos A + \sin A\sin A}}{{\sin A\cos A}}} \right) $
Use the identity that - $ {\sin ^2}A + {\cos ^2}A = 1 $ place in the above equation and simplify the equation –
LHS $ = 1 + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + 2\left( {\dfrac{{co{s^2}A + {{\sin }^2}A}}{{\sin A\cos A}}} \right) $
Again using the same identity –
LHS $ = 1 + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + 2\left( {\dfrac{1}{{\sin A\cos A}}} \right) $
It can be re-written as –
LHS $ = 1 + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) + \left( {\dfrac{2}{{\sin A\cos A}}} \right) $
LHS $ = 1 + \left( {\dfrac{2}{{\sin A\cos A}}} \right) + \left( {\dfrac{1}{{{{\sin }^2}A{{\cos }^2}A}}} \right) $
The above equation satisfies the whole square of two terms - $ {(a + b)^2} = {a^2} + 2ab + {b^2} $
LHS $ = {\left( {1 + \dfrac{1}{{\sin A\cos A}}} \right)^2} $
Again convert the above equation in the form of the required answer. $ \cos ecA = \dfrac{1}{{\sin A}},\sec A = \dfrac{1}{{\cos A}} $
LHS $ = {\left( {1 + \cos ecA\sec A} \right)^2} $
LHS $ = $ RHS
Hence, proved.
Note: Always remember that whenever we have to prove the trigonometric relation, if in between you do not find any identities and further simplifications convert all the given functions in terms of cosine and sine and then use the identity and simplify. Then for the final answer convert the solution as per requirement .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

