
Prove that: $\sin 600{}^\circ \cos 390{}^\circ +\cos 480{}^\circ \sin 150{}^\circ =-1$.
Answer
597k+ views
Hint: For solving this problem, first converting the angle given in the problem statement in the range 0 to 90 degree by using suitable trigonometric properties. Now, we use the trigonometric table of values to prove the equivalence of both the sides.
Complete step-by-step answer:
Some of the important trigonometric formulas used in solving this problem are:
\[\begin{align}
& \sin \left( 360-\theta \right)=-\sin \theta \\
& \cos \left( 360+\theta \right)=\cos \theta \\
& \cos \left( 180-\theta \right)=-\cos \theta \\
& \sin \left( 180-\theta \right)=\sin \theta \\
\end{align}\]
The specific value of functions of sin and cos can be illustrated as:
$\begin{align}
& \sin 30{}^\circ =\dfrac{1}{2} \\
& \sin 60{}^\circ =\dfrac{\sqrt{3}}{2} \\
& \cos 30{}^\circ =\dfrac{\sqrt{3}}{2} \\
& \cos 60{}^\circ =\dfrac{1}{2} \\
\end{align}$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the $\sin 600{}^\circ ,\cos 390{}^\circ \text{ and }\cos 480{}^\circ $ by using the formula \[\sin \left( 360-\theta \right)=-\sin \theta \ \text{ and }\cos \left( 360+\theta \right)=\cos \theta \].
$\begin{align}
& \sin 600{}^\circ =\sin \left( 2\times 360-120 \right){}^\circ \\
& \therefore \sin 600{}^\circ =-\sin \left( 120 \right){}^\circ \\
& \cos 390{}^\circ =\cos \left( 360+30 \right){}^\circ \\
& \therefore \cos 390{}^\circ =\cos \left( 30 \right){}^\circ \\
& \cos 480{}^\circ =\cos \left( 360+120 \right){}^\circ \\
& \therefore \cos 480{}^\circ =\cos \left( 120 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow \left( -\sin 120{}^\circ \right)\left( \cos 30{}^\circ \right)+\left( \cos 120{}^\circ \right)\left( \sin 150{}^\circ \right)$
Now, we try to convert the above functions into the functions given in the form of tables having respective angles between the range of 0 to 90 in degrees. For doing so, we use the formulas \[\cos \left( 180-\theta \right)=-\cos \theta \text{ and }\sin \left( 180-\theta \right)=\sin \theta \]. Now, we get
$\begin{align}
& \sin 120{}^\circ =\sin \left( 180-60 \right){}^\circ \\
& \therefore \sin 120{}^\circ =\sin \left( 60 \right){}^\circ \\
& \cos 120{}^\circ =\cos \left( 180-60 \right){}^\circ \\
& \therefore \cos 120{}^\circ =-\cos \left( 60 \right){}^\circ \\
& \sin 150{}^\circ =\sin \left( 180-30 \right){}^\circ \\
& \therefore \sin 150{}^\circ =\sin \left( 30 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow -\sin 60{}^\circ \cos 30{}^\circ -\cos 60{}^\circ \sin 30{}^\circ $
Now, putting the values from the table mentioned above, we get
$\begin{align}
& \Rightarrow -\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\times \dfrac{1}{2} \\
& \Rightarrow -\dfrac{3}{4}-\dfrac{1}{4} \\
& \Rightarrow \dfrac{-4}{4}=-1 \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Complete step-by-step answer:
Some of the important trigonometric formulas used in solving this problem are:
\[\begin{align}
& \sin \left( 360-\theta \right)=-\sin \theta \\
& \cos \left( 360+\theta \right)=\cos \theta \\
& \cos \left( 180-\theta \right)=-\cos \theta \\
& \sin \left( 180-\theta \right)=\sin \theta \\
\end{align}\]
The specific value of functions of sin and cos can be illustrated as:
$\begin{align}
& \sin 30{}^\circ =\dfrac{1}{2} \\
& \sin 60{}^\circ =\dfrac{\sqrt{3}}{2} \\
& \cos 30{}^\circ =\dfrac{\sqrt{3}}{2} \\
& \cos 60{}^\circ =\dfrac{1}{2} \\
\end{align}$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the $\sin 600{}^\circ ,\cos 390{}^\circ \text{ and }\cos 480{}^\circ $ by using the formula \[\sin \left( 360-\theta \right)=-\sin \theta \ \text{ and }\cos \left( 360+\theta \right)=\cos \theta \].
$\begin{align}
& \sin 600{}^\circ =\sin \left( 2\times 360-120 \right){}^\circ \\
& \therefore \sin 600{}^\circ =-\sin \left( 120 \right){}^\circ \\
& \cos 390{}^\circ =\cos \left( 360+30 \right){}^\circ \\
& \therefore \cos 390{}^\circ =\cos \left( 30 \right){}^\circ \\
& \cos 480{}^\circ =\cos \left( 360+120 \right){}^\circ \\
& \therefore \cos 480{}^\circ =\cos \left( 120 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow \left( -\sin 120{}^\circ \right)\left( \cos 30{}^\circ \right)+\left( \cos 120{}^\circ \right)\left( \sin 150{}^\circ \right)$
Now, we try to convert the above functions into the functions given in the form of tables having respective angles between the range of 0 to 90 in degrees. For doing so, we use the formulas \[\cos \left( 180-\theta \right)=-\cos \theta \text{ and }\sin \left( 180-\theta \right)=\sin \theta \]. Now, we get
$\begin{align}
& \sin 120{}^\circ =\sin \left( 180-60 \right){}^\circ \\
& \therefore \sin 120{}^\circ =\sin \left( 60 \right){}^\circ \\
& \cos 120{}^\circ =\cos \left( 180-60 \right){}^\circ \\
& \therefore \cos 120{}^\circ =-\cos \left( 60 \right){}^\circ \\
& \sin 150{}^\circ =\sin \left( 180-30 \right){}^\circ \\
& \therefore \sin 150{}^\circ =\sin \left( 30 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow -\sin 60{}^\circ \cos 30{}^\circ -\cos 60{}^\circ \sin 30{}^\circ $
Now, putting the values from the table mentioned above, we get
$\begin{align}
& \Rightarrow -\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\times \dfrac{1}{2} \\
& \Rightarrow -\dfrac{3}{4}-\dfrac{1}{4} \\
& \Rightarrow \dfrac{-4}{4}=-1 \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

