
Prove that $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Answer
530.5k+ views
Hint: Assume $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$ and then use the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$ to solve the question.
Complete step-by-step answer:
We have been given to prove - $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Assuming $LHS = \sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$
Therefore, $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$.
Now using the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$, we can write-
$
\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X \\
\Rightarrow (\sin {60^ \circ }\cos \theta + \cos {60^ \circ }\sin \theta ).\sin \theta .(\sin {60^ \circ }\cos \theta - \cos {60^ \circ }\sin \theta ) = X \\
\Rightarrow ({\sin ^2}{60^ \circ }{\cos ^2}\theta - {\cos ^2}{60^ \circ }{\sin ^2}\theta )\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4}{{\cos }^2}\theta - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X\{ \because \sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\} \\
\Rightarrow \left( {\dfrac{3}{4}(1 - {{\sin }^2}\theta ) - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4} - {{\sin }^2}\theta } \right)\sin \theta = X \\
\Rightarrow (3\sin \theta - 4{\sin ^3}\theta )\dfrac{1}{4} = X \\
\{ \because 3\sin \theta - 4{\sin ^3}\theta = \sin 3\theta \} \\
\Rightarrow \dfrac{{\sin 3\theta }}{4} = X = RHS \\
$
Therefore, LHS = RHS {Hence Proved}.
Note: Whenever such types of questions appear, first expand the term $\sin (60 - \theta ),\sin (60 + \theta )$ by using the trigonometric formula –$\sin (A - B) = \sin A\cos B - \cos A\sin B$ and the trigonometric formula $\sin (A + B) = \sin A\cos B + \cos A\sin B$, and then simplify the expression to prove it equal to the RHS.
Complete step-by-step answer:
We have been given to prove - $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Assuming $LHS = \sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$
Therefore, $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$.
Now using the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$, we can write-
$
\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X \\
\Rightarrow (\sin {60^ \circ }\cos \theta + \cos {60^ \circ }\sin \theta ).\sin \theta .(\sin {60^ \circ }\cos \theta - \cos {60^ \circ }\sin \theta ) = X \\
\Rightarrow ({\sin ^2}{60^ \circ }{\cos ^2}\theta - {\cos ^2}{60^ \circ }{\sin ^2}\theta )\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4}{{\cos }^2}\theta - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X\{ \because \sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\} \\
\Rightarrow \left( {\dfrac{3}{4}(1 - {{\sin }^2}\theta ) - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4} - {{\sin }^2}\theta } \right)\sin \theta = X \\
\Rightarrow (3\sin \theta - 4{\sin ^3}\theta )\dfrac{1}{4} = X \\
\{ \because 3\sin \theta - 4{\sin ^3}\theta = \sin 3\theta \} \\
\Rightarrow \dfrac{{\sin 3\theta }}{4} = X = RHS \\
$
Therefore, LHS = RHS {Hence Proved}.
Note: Whenever such types of questions appear, first expand the term $\sin (60 - \theta ),\sin (60 + \theta )$ by using the trigonometric formula –$\sin (A - B) = \sin A\cos B - \cos A\sin B$ and the trigonometric formula $\sin (A + B) = \sin A\cos B + \cos A\sin B$, and then simplify the expression to prove it equal to the RHS.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

