
Prove that $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Answer
517.3k+ views
Hint: Assume $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$ and then use the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$ to solve the question.
Complete step-by-step answer:
We have been given to prove - $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Assuming $LHS = \sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$
Therefore, $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$.
Now using the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$, we can write-
$
\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X \\
\Rightarrow (\sin {60^ \circ }\cos \theta + \cos {60^ \circ }\sin \theta ).\sin \theta .(\sin {60^ \circ }\cos \theta - \cos {60^ \circ }\sin \theta ) = X \\
\Rightarrow ({\sin ^2}{60^ \circ }{\cos ^2}\theta - {\cos ^2}{60^ \circ }{\sin ^2}\theta )\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4}{{\cos }^2}\theta - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X\{ \because \sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\} \\
\Rightarrow \left( {\dfrac{3}{4}(1 - {{\sin }^2}\theta ) - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4} - {{\sin }^2}\theta } \right)\sin \theta = X \\
\Rightarrow (3\sin \theta - 4{\sin ^3}\theta )\dfrac{1}{4} = X \\
\{ \because 3\sin \theta - 4{\sin ^3}\theta = \sin 3\theta \} \\
\Rightarrow \dfrac{{\sin 3\theta }}{4} = X = RHS \\
$
Therefore, LHS = RHS {Hence Proved}.
Note: Whenever such types of questions appear, first expand the term $\sin (60 - \theta ),\sin (60 + \theta )$ by using the trigonometric formula –$\sin (A - B) = \sin A\cos B - \cos A\sin B$ and the trigonometric formula $\sin (A + B) = \sin A\cos B + \cos A\sin B$, and then simplify the expression to prove it equal to the RHS.
Complete step-by-step answer:
We have been given to prove - $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Assuming $LHS = \sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$
Therefore, $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$.
Now using the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$, we can write-
$
\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X \\
\Rightarrow (\sin {60^ \circ }\cos \theta + \cos {60^ \circ }\sin \theta ).\sin \theta .(\sin {60^ \circ }\cos \theta - \cos {60^ \circ }\sin \theta ) = X \\
\Rightarrow ({\sin ^2}{60^ \circ }{\cos ^2}\theta - {\cos ^2}{60^ \circ }{\sin ^2}\theta )\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4}{{\cos }^2}\theta - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X\{ \because \sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\} \\
\Rightarrow \left( {\dfrac{3}{4}(1 - {{\sin }^2}\theta ) - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4} - {{\sin }^2}\theta } \right)\sin \theta = X \\
\Rightarrow (3\sin \theta - 4{\sin ^3}\theta )\dfrac{1}{4} = X \\
\{ \because 3\sin \theta - 4{\sin ^3}\theta = \sin 3\theta \} \\
\Rightarrow \dfrac{{\sin 3\theta }}{4} = X = RHS \\
$
Therefore, LHS = RHS {Hence Proved}.
Note: Whenever such types of questions appear, first expand the term $\sin (60 - \theta ),\sin (60 + \theta )$ by using the trigonometric formula –$\sin (A - B) = \sin A\cos B - \cos A\sin B$ and the trigonometric formula $\sin (A + B) = \sin A\cos B + \cos A\sin B$, and then simplify the expression to prove it equal to the RHS.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

