Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Prove that sin(60θ).sinθ.sin(60+θ)=sin3θ4.

Answer
VerifiedVerified
448k+ views
like imagedislike image
Hint: Assume sin(60θ).sinθ.sin(60+θ)=X and then use the trigonometric formula, sin(A+B)=sinAcosB+cosAsinB and sin(AB)=sinAcosBcosAsinB to solve the question.

Complete step-by-step answer:
We have been given to prove - sin(60θ).sinθ.sin(60+θ)=sin3θ4.
Assuming LHS=sin(60θ).sinθ.sin(60+θ)=X
Therefore, sin(60θ).sinθ.sin(60+θ)=X.
Now using the trigonometric formula, sin(A+B)=sinAcosB+cosAsinB and sin(AB)=sinAcosBcosAsinB, we can write-
sin(60θ).sinθ.sin(60+θ)=X(sin60cosθ+cos60sinθ).sinθ.(sin60cosθcos60sinθ)=X(sin260cos2θcos260sin2θ)sinθ=X(34cos2θsin2θ4)sinθ=X{sin60=32,cos60=12}(34(1sin2θ)sin2θ4)sinθ=X(34sin2θ)sinθ=X(3sinθ4sin3θ)14=X{3sinθ4sin3θ=sin3θ}sin3θ4=X=RHS
Therefore, LHS = RHS {Hence Proved}.

Note: Whenever such types of questions appear, first expand the term sin(60θ),sin(60+θ) by using the trigonometric formula –sin(AB)=sinAcosBcosAsinB and the trigonometric formula sin(A+B)=sinAcosB+cosAsinB, and then simplify the expression to prove it equal to the RHS.
Latest Vedantu courses for you
Grade 7 | CBSE | SCHOOL | English
Vedantu 7 CBSE Pro Course - (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
MathsMaths
EnglishEnglish
ScienceScience
₹49,800 (9% Off)
₹45,300 per year
Select and buy