
Prove that $\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}$.
Answer
586.5k+ views
Hint: Use the trigonometric formulas of $\left( \sin A-\sin B \right)$, value of $\sin 2x$to solve the expression. Take LHS of the expression and prove that the simplified expression of LHS is equal to RHS.
Complete step-by-step solution -
Given the expression, $\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}$.
Let us first take the LHS.
$LHS =\sin 3x +\sin 2x-\sin x$.
We know the formula, $\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
Let us put, A = 2x and B = x.
$\therefore \sin 3x+\left( \sin 2x-\sin x \right)=\sin 3x+2\cos \left( \dfrac{2x+x}{2} \right)\sin \left( \dfrac{2x-x}{2} \right)$
$=\sin 3x+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right)$
We know that, $\sin 2x=2\sin x.\cos x$.
Similarly, $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Now let us replace x with 3x.
$\begin{align}
& \therefore \sin 3x=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
& \therefore LHS=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right)+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right) \\
\end{align}$
$=2\cos \left( \dfrac{3x}{2} \right)\left[ \sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right]$
We know that, $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
Put, $A=\dfrac{3x}{2}$and $B=\dfrac{x}{2}$.
$\therefore LHS=2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{\dfrac{3x}{2}+\dfrac{x}{2}}{2} \right)\cos \left( \dfrac{\dfrac{3x}{2}-\dfrac{x}{2}}{2} \right) \right]$
$\begin{align}
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{4x}{4} \right)\cos \left( \dfrac{2x}{4} \right) \right] \\
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin x\cos \left( \dfrac{x}{2} \right) \right] \\
& =4\cos \left( \dfrac{3x}{2} \right)\sin x\cos \dfrac{x}{2} \\
& =4\sin x\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
\end{align}$
Hence, we proved that LHS = RHS.
Here from the question, $RHS=4\cos \left( \dfrac{x}{2} \right)\sin x\cos \left( \dfrac{3x}{2} \right)$.
Thus, we have proved.
Note: Remember the trigonometric formulae and identities to solve problems like these. Take $\left( \sin 2x-\sin x \right)$first because you will get a simplified expression and will be able to solve the expression more easily. We have used formulas like $\left( \sin A-\sin B \right)$, $\sin 2x,\left( \sin A+\sin B \right)$ to solve the expression. Therefore, remember the formulae.
Complete step-by-step solution -
Given the expression, $\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}$.
Let us first take the LHS.
$LHS =\sin 3x +\sin 2x-\sin x$.
We know the formula, $\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
Let us put, A = 2x and B = x.
$\therefore \sin 3x+\left( \sin 2x-\sin x \right)=\sin 3x+2\cos \left( \dfrac{2x+x}{2} \right)\sin \left( \dfrac{2x-x}{2} \right)$
$=\sin 3x+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right)$
We know that, $\sin 2x=2\sin x.\cos x$.
Similarly, $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Now let us replace x with 3x.
$\begin{align}
& \therefore \sin 3x=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
& \therefore LHS=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right)+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right) \\
\end{align}$
$=2\cos \left( \dfrac{3x}{2} \right)\left[ \sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right]$
We know that, $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
Put, $A=\dfrac{3x}{2}$and $B=\dfrac{x}{2}$.
$\therefore LHS=2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{\dfrac{3x}{2}+\dfrac{x}{2}}{2} \right)\cos \left( \dfrac{\dfrac{3x}{2}-\dfrac{x}{2}}{2} \right) \right]$
$\begin{align}
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{4x}{4} \right)\cos \left( \dfrac{2x}{4} \right) \right] \\
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin x\cos \left( \dfrac{x}{2} \right) \right] \\
& =4\cos \left( \dfrac{3x}{2} \right)\sin x\cos \dfrac{x}{2} \\
& =4\sin x\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
\end{align}$
Hence, we proved that LHS = RHS.
Here from the question, $RHS=4\cos \left( \dfrac{x}{2} \right)\sin x\cos \left( \dfrac{3x}{2} \right)$.
Thus, we have proved.
Note: Remember the trigonometric formulae and identities to solve problems like these. Take $\left( \sin 2x-\sin x \right)$first because you will get a simplified expression and will be able to solve the expression more easily. We have used formulas like $\left( \sin A-\sin B \right)$, $\sin 2x,\left( \sin A+\sin B \right)$ to solve the expression. Therefore, remember the formulae.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

