
Prove that
$\sin 3A.{\sin ^3}A + \cos 3A.{\cos ^3}A = {\cos ^3}2A$
Answer
608.4k+ views
Hint: We cannot solve the Question directly , we have to use some identities, which identity is to be used. We can get a hint of it from the question itself like cos3A whose identity is known to us, simplify the equation and see if you can get something common out and proceed.
Complete step-by-step answer:
We know that
$
\cos 3A = 4{\cos ^3}A - 3\cos A \\
\sin 3A = 3\sin A - 4{\sin ^3}A \\
$
Using these in L.H.S
$\therefore $ The L.H.S
= ${\sin ^3}A\left( {3\sin A - 4{{\sin }^3}A} \right) + {\cos ^3}A\left( {4{{\cos }^3}A - 3\cos A} \right)$
= $3{\sin ^4}A - 4{\sin ^6}A + 4{\cos ^6}A - 3{\cos ^4}A$
Taking common
$
= - 3\left( {{{\cos }^4}A - {{\sin }^4}A} \right) + 4\left( {{{\cos }^6}A - {{\sin }^6}A} \right) \\
= 4\left( {{{\left( {{{\cos }^2}A} \right)}^3} - {{\left( {{{\sin }^2}A} \right)}^3}} \right) - 3\left( {{{\left( {{{\cos }^2}A} \right)}^2} - {{\left( {{{\sin }^2}A} \right)}^2}} \right) \\
$
Using basic algebraic formula,
$ = 4\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{({{\cos }^2}A)}^2} + {{\left( {{{\sin }^2}A} \right)}^2} + {{\cos }^2}A{{\sin }^2}A} \right) - 3\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\cos }^2}A + {{\sin }^2}A} \right)$
We know that ${\sin ^2}A + {\cos ^2}A = 1$,\[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
And taking common $\left( {{{\cos }^2}A - {{\sin }^2}A} \right)$
$ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3.1} \right)$
We can replace 1 by ${\left( {{{\sin }^2}A + {{\cos }^2}A} \right)^2}$
$ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3.{{\left( {{{\sin }^2}A + {{\cos }^2}A} \right)}^2}} \right)$$ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3.{{\left( {{{\sin }^4}A + {{\cos }^4}A + 2{{\sin }^2}A{{\cos }^2}A} \right)}^{}}} \right)$\[ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3{{\sin }^4}A - 3{{\cos }^4}A - 6{{\cos }^2}A{{\sin }^2}A} \right)\]
\[
= \cos 2A\left( {{{\cos }^4}A + {{\sin }^4}A - 2{{\cos }^2}A{{\sin }^2}A} \right) \\
= \cos 2A{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)^2} \\
= \cos 2A.{(\cos 2A)^2} \\
= {\cos ^3}2A \\
\]
=R.H.S
Note: Before solving such questions one needs to have a fine knowledge of trigonometry. About the properties of sine and cosines. Observe the question carefully the given terms will be like those in the properties, then only you will get to know what to apply.
Complete step-by-step answer:
We know that
$
\cos 3A = 4{\cos ^3}A - 3\cos A \\
\sin 3A = 3\sin A - 4{\sin ^3}A \\
$
Using these in L.H.S
$\therefore $ The L.H.S
= ${\sin ^3}A\left( {3\sin A - 4{{\sin }^3}A} \right) + {\cos ^3}A\left( {4{{\cos }^3}A - 3\cos A} \right)$
= $3{\sin ^4}A - 4{\sin ^6}A + 4{\cos ^6}A - 3{\cos ^4}A$
Taking common
$
= - 3\left( {{{\cos }^4}A - {{\sin }^4}A} \right) + 4\left( {{{\cos }^6}A - {{\sin }^6}A} \right) \\
= 4\left( {{{\left( {{{\cos }^2}A} \right)}^3} - {{\left( {{{\sin }^2}A} \right)}^3}} \right) - 3\left( {{{\left( {{{\cos }^2}A} \right)}^2} - {{\left( {{{\sin }^2}A} \right)}^2}} \right) \\
$
Using basic algebraic formula,
$ = 4\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{({{\cos }^2}A)}^2} + {{\left( {{{\sin }^2}A} \right)}^2} + {{\cos }^2}A{{\sin }^2}A} \right) - 3\left( {{{\cos }^2}A - {{\sin }^2}A} \right)\left( {{{\cos }^2}A + {{\sin }^2}A} \right)$
We know that ${\sin ^2}A + {\cos ^2}A = 1$,\[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
And taking common $\left( {{{\cos }^2}A - {{\sin }^2}A} \right)$
$ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3.1} \right)$
We can replace 1 by ${\left( {{{\sin }^2}A + {{\cos }^2}A} \right)^2}$
$ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3.{{\left( {{{\sin }^2}A + {{\cos }^2}A} \right)}^2}} \right)$$ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3.{{\left( {{{\sin }^4}A + {{\cos }^4}A + 2{{\sin }^2}A{{\cos }^2}A} \right)}^{}}} \right)$\[ = \cos 2A\left( {4{{\cos }^4}A + 4{{\sin }^4}A + 4{{\cos }^2}A{{\sin }^2}A - 3{{\sin }^4}A - 3{{\cos }^4}A - 6{{\cos }^2}A{{\sin }^2}A} \right)\]
\[
= \cos 2A\left( {{{\cos }^4}A + {{\sin }^4}A - 2{{\cos }^2}A{{\sin }^2}A} \right) \\
= \cos 2A{\left( {{{\cos }^2}A - {{\sin }^2}A} \right)^2} \\
= \cos 2A.{(\cos 2A)^2} \\
= {\cos ^3}2A \\
\]
=R.H.S
Note: Before solving such questions one needs to have a fine knowledge of trigonometry. About the properties of sine and cosines. Observe the question carefully the given terms will be like those in the properties, then only you will get to know what to apply.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

A Paragraph on Pollution in about 100-150 Words

State and prove the Pythagoras theorem-class-10-maths-CBSE

