
Prove that: \[\sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \theta -\dfrac{5\pi }{2} \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \theta -\dfrac{3\pi }{2} \right)=-1\]
Answer
612k+ views
Hint: We will first simplify the terms in the left hand side of the expression in the formula form and then with the help of cofunction identities and periodic identities we will solve this question.
Complete step-by-step answer:
\[\sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \theta -\dfrac{5\pi }{2} \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \theta -\dfrac{3\pi }{2} \right)=-1.......(1)\]
We will start with simplifying the left hand side of the equation (1). So,
\[\Rightarrow \sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( -\left( \dfrac{5\pi }{2}-\theta \right) \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( -\left( \dfrac{3\pi }{2}-\theta \right) \right).......(2)\]
Now we know from the trigonometry identities that \[\sec (-\theta )=\sec \theta \] and \[\tan (-\theta )=-\tan \theta \]. So using this information in equation (2) we get,
\[\Rightarrow \sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \dfrac{5\pi }{2}-\theta \right)-\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \dfrac{3\pi }{2}-\theta \right).......(3)\]
Rearranging the terms in equation (3) and writing \[\dfrac{5\pi }{2}\] as sum of \[2\pi \] and \[\dfrac{\pi }{2}\] we get,
\[\Rightarrow \sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( 2\pi +\left( \dfrac{\pi }{2}-\theta \right) \right)-\tan \left( 2\pi +\left( \dfrac{\pi }{2}+\theta \right) \right)\tan \left( \dfrac{3\pi }{2}-\theta \right).......(4)\]
Now we know from the cofunction identities that \[\sec \left( \dfrac{3\pi }{2}-\theta \right)=-\text{cosec}\theta \] and \[\tan \left( \dfrac{3\pi }{2}-\theta \right)=\cot \theta \]. So using this information in equation (4) we get,
\[\Rightarrow -\text{cosec}\theta \sec \left( 2\pi +\left( \dfrac{\pi }{2}-\theta \right) \right)-\tan \left( 2\pi +\left( \dfrac{\pi }{2}+\theta \right) \right)\cot \theta .......(5)\]
We also know from the periodic identities that \[\sec \left( 2\pi +\left( \dfrac{\pi }{2}-\theta \right) \right)=\sec \left( \dfrac{\pi }{2}-\theta \right)\] and \[\tan \left( 2\pi +\left( \dfrac{\pi }{2}+\theta \right) \right)=\tan \left( \dfrac{\pi }{2}+\theta \right)\]. So using this information in equation (5) we get,
\[\Rightarrow -\text{cosec}\theta \sec \left( \dfrac{\pi }{2}-\theta \right)-\tan \left( \dfrac{\pi }{2}+\theta \right)\cot \theta .......(6)\]
Also we know that \[\sec \left( \dfrac{\pi }{2}-\theta \right)=\text{cosec}\theta \] and \[\tan \left( \dfrac{\pi }{2}+\theta \right)=-\cot \theta \]. So using this information in equation (6)
we get,
\[\Rightarrow -\text{cosec}\theta \text{cosec }\!\!\theta\!\!\text{ +cot}\theta \cot \theta .......(7)\]
Now squaring the terms in equation (7) we get,
\[\Rightarrow -\text{cose}{{\text{c}}^{2}}\theta \text{+co}{{\text{t}}^{2}}\theta .......(8)\]
Now we know that \[\text{cose}{{\text{c}}^{2}}\theta -{{\cot }^{2}}\theta =1\]. So using this information in equation (8) we get,
\[\Rightarrow -\text{cose}{{\text{c}}^{2}}\theta \text{+co}{{\text{t}}^{2}}\theta =-1\]
And hence this is equal to the right hand side of the equation (1). Thus we have proved the equation (1).
Note: In trigonometry remembering the formulas and the identities is very important because then it becomes easy. We in a hurry can make a mistake in applying the cofunction identities and the periodic identities as we can write cosec in place of –cosec and cot in place of –cot. Also if we don’t remember the formula then we can get confused about how to proceed further after equation (2).
Complete step-by-step answer:
\[\sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \theta -\dfrac{5\pi }{2} \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \theta -\dfrac{3\pi }{2} \right)=-1.......(1)\]
We will start with simplifying the left hand side of the equation (1). So,
\[\Rightarrow \sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( -\left( \dfrac{5\pi }{2}-\theta \right) \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( -\left( \dfrac{3\pi }{2}-\theta \right) \right).......(2)\]
Now we know from the trigonometry identities that \[\sec (-\theta )=\sec \theta \] and \[\tan (-\theta )=-\tan \theta \]. So using this information in equation (2) we get,
\[\Rightarrow \sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \dfrac{5\pi }{2}-\theta \right)-\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \dfrac{3\pi }{2}-\theta \right).......(3)\]
Rearranging the terms in equation (3) and writing \[\dfrac{5\pi }{2}\] as sum of \[2\pi \] and \[\dfrac{\pi }{2}\] we get,
\[\Rightarrow \sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( 2\pi +\left( \dfrac{\pi }{2}-\theta \right) \right)-\tan \left( 2\pi +\left( \dfrac{\pi }{2}+\theta \right) \right)\tan \left( \dfrac{3\pi }{2}-\theta \right).......(4)\]
Now we know from the cofunction identities that \[\sec \left( \dfrac{3\pi }{2}-\theta \right)=-\text{cosec}\theta \] and \[\tan \left( \dfrac{3\pi }{2}-\theta \right)=\cot \theta \]. So using this information in equation (4) we get,
\[\Rightarrow -\text{cosec}\theta \sec \left( 2\pi +\left( \dfrac{\pi }{2}-\theta \right) \right)-\tan \left( 2\pi +\left( \dfrac{\pi }{2}+\theta \right) \right)\cot \theta .......(5)\]
We also know from the periodic identities that \[\sec \left( 2\pi +\left( \dfrac{\pi }{2}-\theta \right) \right)=\sec \left( \dfrac{\pi }{2}-\theta \right)\] and \[\tan \left( 2\pi +\left( \dfrac{\pi }{2}+\theta \right) \right)=\tan \left( \dfrac{\pi }{2}+\theta \right)\]. So using this information in equation (5) we get,
\[\Rightarrow -\text{cosec}\theta \sec \left( \dfrac{\pi }{2}-\theta \right)-\tan \left( \dfrac{\pi }{2}+\theta \right)\cot \theta .......(6)\]
Also we know that \[\sec \left( \dfrac{\pi }{2}-\theta \right)=\text{cosec}\theta \] and \[\tan \left( \dfrac{\pi }{2}+\theta \right)=-\cot \theta \]. So using this information in equation (6)
we get,
\[\Rightarrow -\text{cosec}\theta \text{cosec }\!\!\theta\!\!\text{ +cot}\theta \cot \theta .......(7)\]
Now squaring the terms in equation (7) we get,
\[\Rightarrow -\text{cose}{{\text{c}}^{2}}\theta \text{+co}{{\text{t}}^{2}}\theta .......(8)\]
Now we know that \[\text{cose}{{\text{c}}^{2}}\theta -{{\cot }^{2}}\theta =1\]. So using this information in equation (8) we get,
\[\Rightarrow -\text{cose}{{\text{c}}^{2}}\theta \text{+co}{{\text{t}}^{2}}\theta =-1\]
And hence this is equal to the right hand side of the equation (1). Thus we have proved the equation (1).
Note: In trigonometry remembering the formulas and the identities is very important because then it becomes easy. We in a hurry can make a mistake in applying the cofunction identities and the periodic identities as we can write cosec in place of –cosec and cot in place of –cot. Also if we don’t remember the formula then we can get confused about how to proceed further after equation (2).
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

