
Prove that \[\sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) - \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) + 1 = 0\].
Answer
571.2k+ views
Hint:
Here, we will use different trigonometric identities and formulas to prove the given equation. We will convert secant to cosecant and tangent to cotangent. Then, we will apply the trigonometric identity i.e. multiple of \[90^\circ \] and simplify the left hand side of the given equation.
Formula Used: We will use the formulas \[{\rm{cose}}{{\rm{c}}^2}\theta - {\cot ^2}\theta = 1\], \[\sec \left( {90^\circ - \theta } \right) = {\rm{cosec }}\theta \] and\[\tan \left( {90^\circ - \theta } \right) = \cot \theta \] to solve the question.
Complete step by step solution:
First, we will convert the secants to cosecants.
We will rewrite the expression \[\sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right)\].
Rewriting the angle \[270^\circ \] as \[180^\circ + 90^\circ \], we get
\[\begin{array}{c} \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = \sec \left( {180^\circ + 90^\circ - A} \right)\sec \left( {90^\circ - A} \right)\\ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = \sec \left( {180^\circ + \left( {90^\circ - A} \right)} \right)\sec \left( {90^\circ - A} \right)\end{array}\]
We know that secant is negative in the third quadrant. Therefore, \[\sec \left( {180^\circ + \theta } \right) = - \sec \theta \] (secant does not become cosecant because \[180^\circ \] is an even multiple of \[90^\circ \]).
Therefore, we get
\[\begin{array}{l} \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - \sec \left( {90^\circ - A} \right)\sec \left( {90^\circ - A} \right)\\ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - {\sec ^2}\left( {90^\circ - A} \right)\end{array}\]
We know that the secant and cosecant of two complementary angles follow the relation \[\sec \left( {90^\circ - \theta } \right) = {\rm{cosec }}\theta \].
Substituting \[\sec \left( {90^\circ - A} \right) = {\rm{cosec }}A\] in the expression \[ - {\sec ^2}\left( {90^\circ - A} \right)\], we get
\[ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - {\rm{cose}}{{\rm{c}}^2}A\]
Now, we will convert the tangents to cotangents.
We will rewrite the expression \[\tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right)\].
Rewriting the angle \[270^\circ \] as \[180^\circ + 90^\circ \], we get
\[\begin{array}{c} \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \tan \left( {180^\circ + 90^\circ - A} \right)\tan \left( {90^\circ + A} \right)\\ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \tan \left( {180^\circ + \left( {90^\circ - A} \right)} \right)\tan \left( {90^\circ + A} \right)\end{array}\]
We know that tangent is positive in the third quadrant. Therefore, \[\tan \left( {180^\circ + \theta } \right) = \tan \theta \] (tangent does not become cotangent because \[180^\circ \] is an even multiple of \[90^\circ \]).
Therefore, we get
\[ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \tan \left( {90^\circ - A} \right)\tan \left( {90^\circ + A} \right)\]
We know that the tangent and cotangent of two complementary angles follow the relation \[\tan \left( {90^\circ - \theta } \right) = \cot \theta \].
Substituting \[\tan \left( {90^\circ - A} \right) = \cot A\] in the expression \[\tan \left( {90^\circ - A} \right)\tan \left( {90^\circ + A} \right)\], we get
\[ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \cot A\tan \left( {90^\circ + A} \right)\]
The tangent of an angle is negative in the second quadrant. Therefore, \[\tan \left( {90^\circ + A} \right) = - \cot A\] (tangent becomes cotangent because \[90^\circ \] is an odd multiple of \[90^\circ \]).
Substituting \[\tan \left( {90^\circ + A} \right) = - \cot A\], we get
\[\begin{array}{l} \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \cot A\left( { - \cot A} \right)\\ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = - {\cot ^2}A\end{array}\]
Now, we will solve the left hand side of the equation required to be proved.
Substitute \[\sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - {\rm{cose}}{{\rm{c}}^2}A\] and \[\tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = - {\cot ^2}A\] in the left hand side of the equation, we get
\[\begin{array}{c}\sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) - \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) + 1 = - {\rm{cose}}{{\rm{c}}^2}A - \left( { - {{\cot }^2}A} \right) + 1\\ = - {\rm{cose}}{{\rm{c}}^2}A + {\cot ^2}A + 1\\ = - \left( {{\rm{cose}}{{\rm{c}}^2}A - {{\cot }^2}A} \right) + 1\end{array}\]
Using the trigonometric identity \[{\rm{cose}}{{\rm{c}}^2}\theta - {\cot ^2}\theta = 1\], we get
\[\begin{array}{l} \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) - \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) + 1 = - 1 + 1\\ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) - \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) + 1 = 0\end{array}\]
\[\therefore\] The equation has been proved.
Note:
It is important for us to remember how to convert the secants to cosecant and the tangents to cotangents. For example, \[\tan \left( {180^\circ + \theta } \right) = \tan \theta \] because \[180^\circ \] is an even multiple of \[90^\circ \]. If it was \[\tan \left( {270^\circ + \theta } \right)\], it would become cotangent. We can also solve this question by converting the given expression to an expression of sine and cosine. Then, apply the formula for sine and cosine of sum/difference of two angles to simplify the expression. But the process will become more complicated to solve.
Here, we will use different trigonometric identities and formulas to prove the given equation. We will convert secant to cosecant and tangent to cotangent. Then, we will apply the trigonometric identity i.e. multiple of \[90^\circ \] and simplify the left hand side of the given equation.
Formula Used: We will use the formulas \[{\rm{cose}}{{\rm{c}}^2}\theta - {\cot ^2}\theta = 1\], \[\sec \left( {90^\circ - \theta } \right) = {\rm{cosec }}\theta \] and\[\tan \left( {90^\circ - \theta } \right) = \cot \theta \] to solve the question.
Complete step by step solution:
First, we will convert the secants to cosecants.
We will rewrite the expression \[\sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right)\].
Rewriting the angle \[270^\circ \] as \[180^\circ + 90^\circ \], we get
\[\begin{array}{c} \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = \sec \left( {180^\circ + 90^\circ - A} \right)\sec \left( {90^\circ - A} \right)\\ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = \sec \left( {180^\circ + \left( {90^\circ - A} \right)} \right)\sec \left( {90^\circ - A} \right)\end{array}\]
We know that secant is negative in the third quadrant. Therefore, \[\sec \left( {180^\circ + \theta } \right) = - \sec \theta \] (secant does not become cosecant because \[180^\circ \] is an even multiple of \[90^\circ \]).
Therefore, we get
\[\begin{array}{l} \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - \sec \left( {90^\circ - A} \right)\sec \left( {90^\circ - A} \right)\\ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - {\sec ^2}\left( {90^\circ - A} \right)\end{array}\]
We know that the secant and cosecant of two complementary angles follow the relation \[\sec \left( {90^\circ - \theta } \right) = {\rm{cosec }}\theta \].
Substituting \[\sec \left( {90^\circ - A} \right) = {\rm{cosec }}A\] in the expression \[ - {\sec ^2}\left( {90^\circ - A} \right)\], we get
\[ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - {\rm{cose}}{{\rm{c}}^2}A\]
Now, we will convert the tangents to cotangents.
We will rewrite the expression \[\tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right)\].
Rewriting the angle \[270^\circ \] as \[180^\circ + 90^\circ \], we get
\[\begin{array}{c} \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \tan \left( {180^\circ + 90^\circ - A} \right)\tan \left( {90^\circ + A} \right)\\ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \tan \left( {180^\circ + \left( {90^\circ - A} \right)} \right)\tan \left( {90^\circ + A} \right)\end{array}\]
We know that tangent is positive in the third quadrant. Therefore, \[\tan \left( {180^\circ + \theta } \right) = \tan \theta \] (tangent does not become cotangent because \[180^\circ \] is an even multiple of \[90^\circ \]).
Therefore, we get
\[ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \tan \left( {90^\circ - A} \right)\tan \left( {90^\circ + A} \right)\]
We know that the tangent and cotangent of two complementary angles follow the relation \[\tan \left( {90^\circ - \theta } \right) = \cot \theta \].
Substituting \[\tan \left( {90^\circ - A} \right) = \cot A\] in the expression \[\tan \left( {90^\circ - A} \right)\tan \left( {90^\circ + A} \right)\], we get
\[ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \cot A\tan \left( {90^\circ + A} \right)\]
The tangent of an angle is negative in the second quadrant. Therefore, \[\tan \left( {90^\circ + A} \right) = - \cot A\] (tangent becomes cotangent because \[90^\circ \] is an odd multiple of \[90^\circ \]).
Substituting \[\tan \left( {90^\circ + A} \right) = - \cot A\], we get
\[\begin{array}{l} \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = \cot A\left( { - \cot A} \right)\\ \Rightarrow \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = - {\cot ^2}A\end{array}\]
Now, we will solve the left hand side of the equation required to be proved.
Substitute \[\sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) = - {\rm{cose}}{{\rm{c}}^2}A\] and \[\tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) = - {\cot ^2}A\] in the left hand side of the equation, we get
\[\begin{array}{c}\sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) - \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) + 1 = - {\rm{cose}}{{\rm{c}}^2}A - \left( { - {{\cot }^2}A} \right) + 1\\ = - {\rm{cose}}{{\rm{c}}^2}A + {\cot ^2}A + 1\\ = - \left( {{\rm{cose}}{{\rm{c}}^2}A - {{\cot }^2}A} \right) + 1\end{array}\]
Using the trigonometric identity \[{\rm{cose}}{{\rm{c}}^2}\theta - {\cot ^2}\theta = 1\], we get
\[\begin{array}{l} \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) - \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) + 1 = - 1 + 1\\ \Rightarrow \sec \left( {270^\circ - A} \right)\sec \left( {90^\circ - A} \right) - \tan \left( {270^\circ - A} \right)\tan \left( {90^\circ + A} \right) + 1 = 0\end{array}\]
\[\therefore\] The equation has been proved.
Note:
It is important for us to remember how to convert the secants to cosecant and the tangents to cotangents. For example, \[\tan \left( {180^\circ + \theta } \right) = \tan \theta \] because \[180^\circ \] is an even multiple of \[90^\circ \]. If it was \[\tan \left( {270^\circ + \theta } \right)\], it would become cotangent. We can also solve this question by converting the given expression to an expression of sine and cosine. Then, apply the formula for sine and cosine of sum/difference of two angles to simplify the expression. But the process will become more complicated to solve.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

