
Prove that $ (\sec A - \cos ecA)(1 + \tan A + \cot A) = \tan A\sec A - \cot A\cos ecA $
Answer
571.5k+ views
Hint: Simplify the trigonometric quantities in the form of sin and cos, then solve one side of one and using trigonometric functions and identities, try to make it equal to the other side. Also, rewrite the identities to check if they replace something in any equation.
Complete step-by-step answer:
We have to prove that $ (\sec A - \cos ecA)(1 + \tan A + \cot A) = \tan A\sec A - \cot A\cos ecA $
So, we start by solving Left Hand Side first:
We know that, $ \sec A = \dfrac{1}{{\cos A}} $ , $ \cos ecA = \dfrac{1}{{\sin A}} $ , $ \tan A = \dfrac{{\sin A}}{{\cos A}} $ and $ \cot A = \dfrac{{\cos A}}{{\sin A}} $ .
Putting the above values in the given equation, we get –
$ (\dfrac{1}{{\cos A}} - \dfrac{1}{{\sin A}})(1 + \dfrac{{\sin A}}{{\cos A}} + \dfrac{{\cos A}}{{\sin A}}) $
On further solving, we get –
$ (\dfrac{{\sin A - \cos A}}{{\sin A\cos A}})(\dfrac{{\sin A\cos A + {{\sin }^2}A + {{\cos }^2}A}}{{\sin A\cos A}}) $
We know that, $ {\sin ^2}A + {\cos ^2}A = 1 $ , putting this value in the above equation,
$ (\dfrac{{\sin A - \cos A}}{{\sin A\cos A}})(\dfrac{{\sin A\cos A + 1}}{{\sin A\cos A}}) $
Multiplying the resultant values,
$ \dfrac{{{{\sin }^2}A\cos A + \sin A - \sin A{{\cos }^2}A - \cos A}}{{{{\sin }^2}A{{\cos }^2}A}} $
Now $ {\sin ^2}A + {\cos ^2}A = 1 $ can also be written as,
$ {\sin ^2}A = 1 - {\cos ^2}A $ and $ {\cos ^2}A = 1 - {\sin ^2}A $ .
Putting the above two results in the simplified equation, we get
$
\Rightarrow \dfrac{{(1 - {{\cos }^2}A)\cos A + \sin A - \sin A(1 - {{\sin }^2}A) - \cos A}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{\cos A - {{\cos }^3}A + \sin A - \sin A + {{\sin }^3}A - cosA}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{{{\sin }^3}A}}{{{{\sin }^2}A{{\cos }^2}A}} - \dfrac{{{{\cos }^3}A}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{\sin A}}{{{{\cos }^2}A}} - \dfrac{{\cos A}}{{{{\sin }^2}A}} \\
= \tan A\sec A - \cot A\cos ecA \;
$
Now Left Hand Side = Right Hand Side
Hence proved.
Note: There are six trigonometric ratios, sine, cosine, tangent, cotangent, cosecant and secant. These six trigonometric ratios are abbreviated as sin, cos, tan, cot, cosec and sec respectively. Since they are expressed in terms of the ratio of sides of a right angled triangle for a specific angle θ , they are called trigonometric ratios.
Complete step-by-step answer:
We have to prove that $ (\sec A - \cos ecA)(1 + \tan A + \cot A) = \tan A\sec A - \cot A\cos ecA $
So, we start by solving Left Hand Side first:
We know that, $ \sec A = \dfrac{1}{{\cos A}} $ , $ \cos ecA = \dfrac{1}{{\sin A}} $ , $ \tan A = \dfrac{{\sin A}}{{\cos A}} $ and $ \cot A = \dfrac{{\cos A}}{{\sin A}} $ .
Putting the above values in the given equation, we get –
$ (\dfrac{1}{{\cos A}} - \dfrac{1}{{\sin A}})(1 + \dfrac{{\sin A}}{{\cos A}} + \dfrac{{\cos A}}{{\sin A}}) $
On further solving, we get –
$ (\dfrac{{\sin A - \cos A}}{{\sin A\cos A}})(\dfrac{{\sin A\cos A + {{\sin }^2}A + {{\cos }^2}A}}{{\sin A\cos A}}) $
We know that, $ {\sin ^2}A + {\cos ^2}A = 1 $ , putting this value in the above equation,
$ (\dfrac{{\sin A - \cos A}}{{\sin A\cos A}})(\dfrac{{\sin A\cos A + 1}}{{\sin A\cos A}}) $
Multiplying the resultant values,
$ \dfrac{{{{\sin }^2}A\cos A + \sin A - \sin A{{\cos }^2}A - \cos A}}{{{{\sin }^2}A{{\cos }^2}A}} $
Now $ {\sin ^2}A + {\cos ^2}A = 1 $ can also be written as,
$ {\sin ^2}A = 1 - {\cos ^2}A $ and $ {\cos ^2}A = 1 - {\sin ^2}A $ .
Putting the above two results in the simplified equation, we get
$
\Rightarrow \dfrac{{(1 - {{\cos }^2}A)\cos A + \sin A - \sin A(1 - {{\sin }^2}A) - \cos A}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{\cos A - {{\cos }^3}A + \sin A - \sin A + {{\sin }^3}A - cosA}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{{{\sin }^3}A}}{{{{\sin }^2}A{{\cos }^2}A}} - \dfrac{{{{\cos }^3}A}}{{{{\sin }^2}A{{\cos }^2}A}} \\
= \dfrac{{\sin A}}{{{{\cos }^2}A}} - \dfrac{{\cos A}}{{{{\sin }^2}A}} \\
= \tan A\sec A - \cot A\cos ecA \;
$
Now Left Hand Side = Right Hand Side
Hence proved.
Note: There are six trigonometric ratios, sine, cosine, tangent, cotangent, cosecant and secant. These six trigonometric ratios are abbreviated as sin, cos, tan, cot, cosec and sec respectively. Since they are expressed in terms of the ratio of sides of a right angled triangle for a specific angle θ , they are called trigonometric ratios.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

