
Prove that: ${{\sec }^{6}}A-{{\tan }^{6}}A=1+3{{\tan }^{2}}A+3{{\tan }^{4}}A$.
Answer
557.1k+ views
Hint: We use the formula of ${{\left( a \right)}^{3}}-{{\left( b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$ to factorise the given equation. Then we use the trigonometric identity of $\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)=1$. We simplify the values and use ${{\sec }^{2}}A=1+{{\tan }^{2}}A$. We equate both sides of the equation to prove it.
Complete step by step answer:
We have to prove the given equality of ${{\sec }^{6}}A-{{\tan }^{6}}A=1+3{{\tan }^{2}}A+3{{\tan }^{4}}A$.
We take two sides separately and find their simplified answer.
We know ${{\left( a \right)}^{3}}-{{\left( b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$
For the left-hand side equation ${{\sec }^{6}}A-{{\tan }^{6}}A$, we have
$\begin{align}
& \Rightarrow {{\sec }^{6}}A-{{\tan }^{6}}A \\
& \Rightarrow {{\left( {{\sec }^{2}}A \right)}^{3}}-{{\left( {{\tan }^{2}}A \right)}^{3}} \\
& \Rightarrow \left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)\left( {{\sec }^{4}}A+{{\sec }^{2}}A{{\tan }^{2}}A+{{\tan }^{4}}A \right) \\
\end{align}$
We know the trigonometric identity of $\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)=1$. Using the property, we get
$\begin{align}
& \Rightarrow \left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)\left( {{\sec }^{4}}A+{{\sec }^{2}}A{{\tan }^{2}}A+{{\tan }^{4}}A \right) \\
& \Rightarrow 1.\left( {{\sec }^{4}}A+{{\sec }^{2}}A{{\tan }^{2}}A+{{\tan }^{4}}A \right) \\
& \Rightarrow {{\left( {{\sec }^{2}}A \right)}^{2}}+\left( {{\sec }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
\end{align}$
Now we replace with ${{\sec }^{2}}A=1+{{\tan }^{2}}A$
$\begin{align}
& \Rightarrow {{\left( {{\sec }^{2}}A \right)}^{2}}+\left( {{\sec }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
& \Rightarrow {{\left( 1+{{\tan }^{2}}A \right)}^{2}}+\left( 1+{{\tan }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
\end{align}$
Now we simplify the answer by expanding the answer.
$\begin{align}
& \Rightarrow {{\left( 1+{{\tan }^{2}}A \right)}^{2}}+\left( 1+{{\tan }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
& \Rightarrow 1+2{{\tan }^{2}}A+{{\tan }^{4}}A+{{\tan }^{2}}A+{{\tan }^{4}}A+{{\tan }^{4}}A \\
& \Rightarrow 1+3{{\tan }^{2}}A+3{{\tan }^{4}}A \\
\end{align}$
Thus, proved R.H.S is equal to L.H.S.
Note: Instead of ${{\left( a \right)}^{3}}-{{\left( b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$, we also could have used the formula of ${{\left( a \right)}^{3}}-{{\left( b \right)}^{3}}={{\left( a-b \right)}^{3}}+3ab\left( a-b \right)$. Then we had to use the same theorems of $\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)=1$ to simplify the answer. We get to prove the same result following the rest of the process in a similar way.
Complete step by step answer:
We have to prove the given equality of ${{\sec }^{6}}A-{{\tan }^{6}}A=1+3{{\tan }^{2}}A+3{{\tan }^{4}}A$.
We take two sides separately and find their simplified answer.
We know ${{\left( a \right)}^{3}}-{{\left( b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$
For the left-hand side equation ${{\sec }^{6}}A-{{\tan }^{6}}A$, we have
$\begin{align}
& \Rightarrow {{\sec }^{6}}A-{{\tan }^{6}}A \\
& \Rightarrow {{\left( {{\sec }^{2}}A \right)}^{3}}-{{\left( {{\tan }^{2}}A \right)}^{3}} \\
& \Rightarrow \left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)\left( {{\sec }^{4}}A+{{\sec }^{2}}A{{\tan }^{2}}A+{{\tan }^{4}}A \right) \\
\end{align}$
We know the trigonometric identity of $\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)=1$. Using the property, we get
$\begin{align}
& \Rightarrow \left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)\left( {{\sec }^{4}}A+{{\sec }^{2}}A{{\tan }^{2}}A+{{\tan }^{4}}A \right) \\
& \Rightarrow 1.\left( {{\sec }^{4}}A+{{\sec }^{2}}A{{\tan }^{2}}A+{{\tan }^{4}}A \right) \\
& \Rightarrow {{\left( {{\sec }^{2}}A \right)}^{2}}+\left( {{\sec }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
\end{align}$
Now we replace with ${{\sec }^{2}}A=1+{{\tan }^{2}}A$
$\begin{align}
& \Rightarrow {{\left( {{\sec }^{2}}A \right)}^{2}}+\left( {{\sec }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
& \Rightarrow {{\left( 1+{{\tan }^{2}}A \right)}^{2}}+\left( 1+{{\tan }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
\end{align}$
Now we simplify the answer by expanding the answer.
$\begin{align}
& \Rightarrow {{\left( 1+{{\tan }^{2}}A \right)}^{2}}+\left( 1+{{\tan }^{2}}A \right){{\tan }^{2}}A+{{\tan }^{4}}A \\
& \Rightarrow 1+2{{\tan }^{2}}A+{{\tan }^{4}}A+{{\tan }^{2}}A+{{\tan }^{4}}A+{{\tan }^{4}}A \\
& \Rightarrow 1+3{{\tan }^{2}}A+3{{\tan }^{4}}A \\
\end{align}$
Thus, proved R.H.S is equal to L.H.S.
Note: Instead of ${{\left( a \right)}^{3}}-{{\left( b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$, we also could have used the formula of ${{\left( a \right)}^{3}}-{{\left( b \right)}^{3}}={{\left( a-b \right)}^{3}}+3ab\left( a-b \right)$. Then we had to use the same theorems of $\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)=1$ to simplify the answer. We get to prove the same result following the rest of the process in a similar way.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

