
Prove that ${{\sec }^{4}}\theta -{{\sec }^{2}}\theta ={{\tan }^{4}}\theta +{{\tan }^{2}}\theta $.
Answer
511.8k+ views
Hint: Take ${{\sec }^{2}}\theta $ common from the terms in L.H.S. and use ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ and simplify the expression. Hence prove that L.H.S. = R.H.S.
Complete step-by-step answer:
Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine, tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the opposite side.
Pythagorean identities:
The identities ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1,{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ and ${{\csc }^{2}}\theta =1+{{\cot }^{2}}\theta $ are known as Pythagorean identities as they are a direct consequence of Pythagoras’ theorem in a right-angled triangle.
We have L.H.S. $={{\sec }^{4}}\theta -{{\sec }^{2}}\theta $
We know that ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $.
Hence, we have
L.H.S. $={{\left( 1+{{\tan }^{2}}\theta \right)}^{2}}-\left( 1+{{\tan }^{2}}\theta \right)$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above algebraic identity, we get
L.H.S. $=1+2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta -1-{{\tan }^{2}}\theta $
Hence, we have L.H.S. $={{\tan }^{4}}\theta +{{\tan }^{2}}\theta $
Hence, we have L.H.S. = R.H.S.
Note: Alternative solution.
We have L.H.S $={{\sec }^{4}}\theta -{{\sec }^{2}}\theta $
Taking ${{\sec }^{2}}\theta $ common, we get
L.H.S $={{\sec }^{2}}\theta \left( {{\sec }^{2}}\theta -1 \right)$
Using ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $, we get
L.H.S $=\left( 1+{{\tan }^{2}}\theta \right)\left( {{\tan }^{2}}\theta \right)$
Using the distributive property of multiplication over addition, i.e. a(b+c) = ab+ac, we get
L.H.S $={{\tan }^{2}}\theta +{{\tan }^{4}}\theta $
Hence, we have L.H.S = R.H.S
Complete step-by-step answer:
Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine, tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the opposite side.
Pythagorean identities:
The identities ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1,{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ and ${{\csc }^{2}}\theta =1+{{\cot }^{2}}\theta $ are known as Pythagorean identities as they are a direct consequence of Pythagoras’ theorem in a right-angled triangle.
We have L.H.S. $={{\sec }^{4}}\theta -{{\sec }^{2}}\theta $
We know that ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $.
Hence, we have
L.H.S. $={{\left( 1+{{\tan }^{2}}\theta \right)}^{2}}-\left( 1+{{\tan }^{2}}\theta \right)$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above algebraic identity, we get
L.H.S. $=1+2{{\tan }^{2}}\theta +{{\tan }^{4}}\theta -1-{{\tan }^{2}}\theta $
Hence, we have L.H.S. $={{\tan }^{4}}\theta +{{\tan }^{2}}\theta $
Hence, we have L.H.S. = R.H.S.
Note: Alternative solution.
We have L.H.S $={{\sec }^{4}}\theta -{{\sec }^{2}}\theta $
Taking ${{\sec }^{2}}\theta $ common, we get
L.H.S $={{\sec }^{2}}\theta \left( {{\sec }^{2}}\theta -1 \right)$
Using ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $, we get
L.H.S $=\left( 1+{{\tan }^{2}}\theta \right)\left( {{\tan }^{2}}\theta \right)$
Using the distributive property of multiplication over addition, i.e. a(b+c) = ab+ac, we get
L.H.S $={{\tan }^{2}}\theta +{{\tan }^{4}}\theta $
Hence, we have L.H.S = R.H.S
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
