
Prove that \[\operatorname{Sin} {38^ \circ } + \operatorname{Sin} {22^ \circ } = \operatorname{Sin} {82^ \circ }\]
Answer
583.8k+ views
Hint: Here we will solve the left hand side of the given equation and get to right hand side
We can use the following identities to solve the LHS
\[SinA + SinB = 2Sin(\dfrac{{A + B}}{2})\operatorname{Cos} (\dfrac{{A + B}}{2})\]
\[\cos \left( {90 - \theta } \right) = \sin \theta \]
Complete step-by-step answer:
Start solving with L.H.S
\[LHS = \operatorname{Sin} {38^ \circ } + \operatorname{Sin} {22^ \circ }\]
Applying the following identity:
$\operatorname{Sin} A + \operatorname{Sin} B = 2\operatorname{Sin} (\dfrac{{A + B}}{2})Cos(\dfrac{{A + B}}{2})$
We get:-
Since in LHS
\[A = {38^ \circ }\]and \[B = {22^ \circ }\]
Putting in the values in the identity we get:-
$ \Rightarrow $\[\operatorname{Sin} {38^ \circ } + \operatorname{Sin} {22^ \circ } = 2\operatorname{Sin} \left( {\dfrac{{38 + 22}}{2}} \right)\operatorname{Cos} \left( {\dfrac{{38 - 22}}{2}} \right)\]
After adding and subtracting the angles we get
$ \Rightarrow $\[LHS = 2\operatorname{Sin} \left( {\dfrac{{60}}{2}} \right)\operatorname{Cos} \left( {\dfrac{{16}}{2}} \right)\]
Dividing the angles by 2 we get:-
$ \Rightarrow $\[LHS = 2\operatorname{Sin} ({30^ \circ })\operatorname{Cos} {8^ \circ }\]
Now we know that,
The value of \[\sin ({30^ \circ }) = \dfrac{1}{2}\]
Hence putting this value in above equation we get:-
$ \Rightarrow $\[LHS = 2.\dfrac{1}{2}.\operatorname{Cos} {8^ \circ }\]
$ \Rightarrow $\[LHS = \operatorname{Cos} {8^ \circ }\]
Now since we know that
\[\cos \left( {90 - \theta } \right) = \sin \theta \]
Hence applying this identity we get:-
$ \Rightarrow $\[\cos {8^ \circ } = \cos \left( {{{90}^ \circ } - {{82}^ \circ }} \right)\]
\[ = \sin {82^ \circ }\]
Hence \[LHS = RHS\]
Hence proved.
Note: When you don’t have the perfect angle in these types of questions you should use identities which have sum of angles and start solving by taking one side which is RHS or LHS using the identities which have sum of angles.
We can use the following identities to solve the LHS
\[SinA + SinB = 2Sin(\dfrac{{A + B}}{2})\operatorname{Cos} (\dfrac{{A + B}}{2})\]
\[\cos \left( {90 - \theta } \right) = \sin \theta \]
Complete step-by-step answer:
Start solving with L.H.S
\[LHS = \operatorname{Sin} {38^ \circ } + \operatorname{Sin} {22^ \circ }\]
Applying the following identity:
$\operatorname{Sin} A + \operatorname{Sin} B = 2\operatorname{Sin} (\dfrac{{A + B}}{2})Cos(\dfrac{{A + B}}{2})$
We get:-
Since in LHS
\[A = {38^ \circ }\]and \[B = {22^ \circ }\]
Putting in the values in the identity we get:-
$ \Rightarrow $\[\operatorname{Sin} {38^ \circ } + \operatorname{Sin} {22^ \circ } = 2\operatorname{Sin} \left( {\dfrac{{38 + 22}}{2}} \right)\operatorname{Cos} \left( {\dfrac{{38 - 22}}{2}} \right)\]
After adding and subtracting the angles we get
$ \Rightarrow $\[LHS = 2\operatorname{Sin} \left( {\dfrac{{60}}{2}} \right)\operatorname{Cos} \left( {\dfrac{{16}}{2}} \right)\]
Dividing the angles by 2 we get:-
$ \Rightarrow $\[LHS = 2\operatorname{Sin} ({30^ \circ })\operatorname{Cos} {8^ \circ }\]
Now we know that,
The value of \[\sin ({30^ \circ }) = \dfrac{1}{2}\]
Hence putting this value in above equation we get:-
$ \Rightarrow $\[LHS = 2.\dfrac{1}{2}.\operatorname{Cos} {8^ \circ }\]
$ \Rightarrow $\[LHS = \operatorname{Cos} {8^ \circ }\]
Now since we know that
\[\cos \left( {90 - \theta } \right) = \sin \theta \]
Hence applying this identity we get:-
$ \Rightarrow $\[\cos {8^ \circ } = \cos \left( {{{90}^ \circ } - {{82}^ \circ }} \right)\]
\[ = \sin {82^ \circ }\]
Hence \[LHS = RHS\]
Hence proved.
Note: When you don’t have the perfect angle in these types of questions you should use identities which have sum of angles and start solving by taking one side which is RHS or LHS using the identities which have sum of angles.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

