
Prove that $\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1$
Answer
496.2k+ views
Hint: In this question, we will proceed by considering the L.H.S part of the given equation. Then use the formula in trigonometric identities and trigonometric ratios to prove that the L.H.S part of the given equation is equal to the R.H.S part.
Complete step-by-step answer:
Given equation is $\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1$
Consider the L.H.S part of the equation
We know that $1 - {\cos ^2}\theta = {\sin ^2}\theta $. By using this formula, we have
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \sqrt {{{\sin }^2}\theta } \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \left( {\sin \theta } \right) \\
$
We know that $\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$. By using this formula, we have
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \sqrt {{{\sin }^2}\theta } \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{\sin \theta }}\left( {\sin \theta } \right) = \dfrac{{\sin \theta }}{{\sin \theta }} \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = 1 \\
\therefore {\text{L}}{\text{.H}}{\text{.S}} = {\text{R}}{\text{.H}}{\text{.S}} \\
$
Hence, proved that $\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1$.
Note: Here we have used the trigonometry identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $ and the trigonometric ratio $\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$. So, in solving these types of questions, remember all the formula n trigonometry to solve easily.
Complete step-by-step answer:
Given equation is $\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1$
Consider the L.H.S part of the equation
We know that $1 - {\cos ^2}\theta = {\sin ^2}\theta $. By using this formula, we have
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \sqrt {{{\sin }^2}\theta } \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \left( {\sin \theta } \right) \\
$
We know that $\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$. By using this formula, we have
$
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \sqrt {{{\sin }^2}\theta } \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{\sin \theta }}\left( {\sin \theta } \right) = \dfrac{{\sin \theta }}{{\sin \theta }} \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = 1 \\
\therefore {\text{L}}{\text{.H}}{\text{.S}} = {\text{R}}{\text{.H}}{\text{.S}} \\
$
Hence, proved that $\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1$.
Note: Here we have used the trigonometry identity ${\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta $ and the trigonometric ratio $\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$. So, in solving these types of questions, remember all the formula n trigonometry to solve easily.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
