Answer
Verified
456.9k+ views
Hint: We have to prove that the given combination expression is equal for this problem. We are going to prove this relation by solving the right hand side using some relations in combinations.
We know that: a combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter, in combinations, one can select the items in any order.
Now we apply a formula: \[^n{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}\]
Complete step-by-step answer:
We have to prove that, \[^n{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}{ = ^{n + 2}}{C_r}\]
Let us take from right hand side,
\[{ \Rightarrow ^n}{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}\]
Expanding the middle term, we get,
\[{ \Rightarrow ^n}{C_r}{ + ^n}{C_{r - 1}}{ + ^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}\]
We know that,
\[^n{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}\]
Simplifying we get,
\[ \Rightarrow {(^n}{C_r}{ + ^n}{C_{r - 1}}) + {(^n}{C_{r - 1}}{ + ^n}{C_{r - 2}})\]
Applying the formula, we get,
\[{ \Rightarrow ^{n + 1}}{C_r}{ + ^{n + 1}}{C_{r - 1}}\]
Again, applying the formula, we get,
\[{ \Rightarrow ^{(n + 1) + 1}}{C_r}\]
Simplifying we get,
\[{ \Rightarrow ^{(n + 2)}}{C_r}\]
Hence, \[^n{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}{ = ^{n + 2}}{C_r}\]
Note: A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter, in combinations, one can select the items in any order.
Combinations can be confused with permutations. However, in permutations the order of the selected items is essential. For example, the arrangements \[ab\] and \[ba\] are equal in combination (considered as one arrangement), while in permutations, the arrangements are different.
To differentiate combination and permutation, let us consider an example.
Here is a statement that: “My fruit salad is a combination of apples, grapes and bananas" We don't care what order the fruits are in, they could also be "bananas, grapes and apples" or "grapes, apples and bananas", it’s the same fruit salad.
Here is another statement that: "The combination to the safe is 472". Now we do care about the order. "724" won't work, nor will "247". It has to be exactly 4-7-2.
First statement is an example of combination and the second statement is an example of permutation.
We know that: a combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter, in combinations, one can select the items in any order.
Now we apply a formula: \[^n{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}\]
Complete step-by-step answer:
We have to prove that, \[^n{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}{ = ^{n + 2}}{C_r}\]
Let us take from right hand side,
\[{ \Rightarrow ^n}{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}\]
Expanding the middle term, we get,
\[{ \Rightarrow ^n}{C_r}{ + ^n}{C_{r - 1}}{ + ^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}\]
We know that,
\[^n{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}\]
Simplifying we get,
\[ \Rightarrow {(^n}{C_r}{ + ^n}{C_{r - 1}}) + {(^n}{C_{r - 1}}{ + ^n}{C_{r - 2}})\]
Applying the formula, we get,
\[{ \Rightarrow ^{n + 1}}{C_r}{ + ^{n + 1}}{C_{r - 1}}\]
Again, applying the formula, we get,
\[{ \Rightarrow ^{(n + 1) + 1}}{C_r}\]
Simplifying we get,
\[{ \Rightarrow ^{(n + 2)}}{C_r}\]
Hence, \[^n{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}}{ = ^{n + 2}}{C_r}\]
Note: A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter, in combinations, one can select the items in any order.
Combinations can be confused with permutations. However, in permutations the order of the selected items is essential. For example, the arrangements \[ab\] and \[ba\] are equal in combination (considered as one arrangement), while in permutations, the arrangements are different.
To differentiate combination and permutation, let us consider an example.
Here is a statement that: “My fruit salad is a combination of apples, grapes and bananas" We don't care what order the fruits are in, they could also be "bananas, grapes and apples" or "grapes, apples and bananas", it’s the same fruit salad.
Here is another statement that: "The combination to the safe is 472". Now we do care about the order. "724" won't work, nor will "247". It has to be exactly 4-7-2.
First statement is an example of combination and the second statement is an example of permutation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it