
Prove that $\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\dfrac{-2}{\cos \theta },\text{ where }\dfrac{\pi }{2}<\theta <\pi $
Answer
595.2k+ views
Hint: Simply the expression $\dfrac{1-\sin \theta }{1+\sin \theta }$ by multiplying the numerator and denominator by $1-\sin \theta $ and using the identities $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ and $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $. Similarly, simplify the expression $\dfrac{1+\sin \theta }{1-\sin \theta }$ by multiplying the numerator and the denominator by $1+\sin \theta $ and using the identities $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ and $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $. Hence find the simplified expressions for $\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}$ and $\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}$. Hence evaluate the expression \[\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|\] and hence prove L.H.S = R.H.S.
Complete step-by-step answer:
Simplifying the expression $\dfrac{1-\sin \theta }{1+\sin \theta }$:
Multiplying the numerator and denominator by $1-\sin \theta $, we get
$\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{1-\sin \theta }{1+\sin \theta }\times \dfrac{1-\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{1-{{\sin }^{2}}\theta }$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $
Hence, we have \[\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }\]
Simplifying the expression $\dfrac{1+\sin \theta }{1-\sin \theta }$:
Multiplying the numerator and denominator by $1+\sin \theta $, we get
$\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{1+\sin \theta }{1-\sin \theta }\times \dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{1-{{\sin }^{2}}\theta }$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $
Hence, we have \[\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }\]
Hence, we have
$\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}$
We know that $\sqrt{{{x}^{2}}}=\left| x \right|$
Hence, we have
$\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=\left| \dfrac{1-\sin \theta }{\cos \theta } \right|$
Similarly, we have $\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}=\sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}=\left| \dfrac{1+\sin \theta }{\cos \theta } \right|$
We know that $-1\le \sin \theta \le 1$
Hence, we have $1+\sin \theta \ge 0,1-\sin \theta \ge 0$
Also, since $\dfrac{\pi }{2}<\theta <\pi ,$ we have $\cos \theta <0$
Hence, we have $\left| \cos \theta \right|=-\cos \theta ,\left| 1+\sin \theta \right|=1+\sin \theta ,\left| 1-\sin \theta \right|=1-\sin \theta $
Hence, we have
$\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\left| \left| \dfrac{1-\sin \theta }{\cos \theta } \right|+\left| \dfrac{1+\sin \theta }{\cos \theta } \right| \right|$
Since $\left| \cos \theta \right|=-\cos \theta ,\left| 1+\sin \theta \right|=1+\sin \theta ,\left| 1-\sin \theta \right|=1-\sin \theta $ we have
$\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\left| -\dfrac{1-\sin \theta }{\cos \theta }-\dfrac{1+\sin \theta }{\cos \theta } \right|=\left| \dfrac{2}{\cos \theta } \right|$
Since $\left| \cos \theta \right|=-\cos \theta ,$ we have
$\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\dfrac{-2}{\cos \theta }$
Note: [1] Many students make a mistake by writing $\sqrt{{{\cos }^{2}}x}=\cos x$. This is incorrect as the square root (L.H.S) is a positive quantity, whereas cosx (R.H.S) can be positive as well as a negative quantity. In general, we have $\sqrt{{{x}^{2}}}=\left| x \right|$ and not $\sqrt{{{x}^{2}}}=x$
Complete step-by-step answer:
Simplifying the expression $\dfrac{1-\sin \theta }{1+\sin \theta }$:
Multiplying the numerator and denominator by $1-\sin \theta $, we get
$\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{1-\sin \theta }{1+\sin \theta }\times \dfrac{1-\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{1-{{\sin }^{2}}\theta }$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $
Hence, we have \[\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }\]
Simplifying the expression $\dfrac{1+\sin \theta }{1-\sin \theta }$:
Multiplying the numerator and denominator by $1+\sin \theta $, we get
$\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{1+\sin \theta }{1-\sin \theta }\times \dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{1-{{\sin }^{2}}\theta }$
We know that $1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta $
Hence, we have \[\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }\]
Hence, we have
$\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}$
We know that $\sqrt{{{x}^{2}}}=\left| x \right|$
Hence, we have
$\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=\left| \dfrac{1-\sin \theta }{\cos \theta } \right|$
Similarly, we have $\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}=\sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}=\left| \dfrac{1+\sin \theta }{\cos \theta } \right|$
We know that $-1\le \sin \theta \le 1$
Hence, we have $1+\sin \theta \ge 0,1-\sin \theta \ge 0$
Also, since $\dfrac{\pi }{2}<\theta <\pi ,$ we have $\cos \theta <0$
Hence, we have $\left| \cos \theta \right|=-\cos \theta ,\left| 1+\sin \theta \right|=1+\sin \theta ,\left| 1-\sin \theta \right|=1-\sin \theta $
Hence, we have
$\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\left| \left| \dfrac{1-\sin \theta }{\cos \theta } \right|+\left| \dfrac{1+\sin \theta }{\cos \theta } \right| \right|$
Since $\left| \cos \theta \right|=-\cos \theta ,\left| 1+\sin \theta \right|=1+\sin \theta ,\left| 1-\sin \theta \right|=1-\sin \theta $ we have
$\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\left| -\dfrac{1-\sin \theta }{\cos \theta }-\dfrac{1+\sin \theta }{\cos \theta } \right|=\left| \dfrac{2}{\cos \theta } \right|$
Since $\left| \cos \theta \right|=-\cos \theta ,$ we have
$\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\dfrac{-2}{\cos \theta }$
Note: [1] Many students make a mistake by writing $\sqrt{{{\cos }^{2}}x}=\cos x$. This is incorrect as the square root (L.H.S) is a positive quantity, whereas cosx (R.H.S) can be positive as well as a negative quantity. In general, we have $\sqrt{{{x}^{2}}}=\left| x \right|$ and not $\sqrt{{{x}^{2}}}=x$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

