
Prove that $\left( \sin \alpha +\cos \alpha \right)\left( \tan \alpha +\cot \alpha \right)=\sec \alpha +\csc \alpha $.
Answer
531.6k+ views
Hint: We have a sum of two terms on the left-hand side of $\left( \tan \alpha +\cot \alpha \right)$. We simplify $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$ and $\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }$ on both numerator and denominator. Then we add them as the LCM of the denominators are the multiplication of them. Then we use the identity of $\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)=1$ to find the solution of the numerator. We also need to mention the conditions.
Complete step-by-step solution:
We simplify the addition part of $\left( \tan \alpha +\cot \alpha \right)$ by breaking it as $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$ and $\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }$. We replace the values as and get
$\begin{align}
& \left( \tan \alpha +\cot \alpha \right) \\
& =\dfrac{\sin \alpha }{\cos \alpha }+\dfrac{\cos \alpha }{\sin \alpha } \\
& =\dfrac{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha }{\sin \alpha \cos \alpha } \\
\end{align}$
We replace the value with $\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)=1$.
Therefore, $\left( \tan \alpha +\cot \alpha \right)=\dfrac{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\sin \alpha \cos \alpha }$
We multiply $\dfrac{1}{\sin \alpha \cos \alpha }$ with $\left( \sin \alpha +\cos \alpha \right)$.
So, $\left( \sin \alpha +\cos \alpha \right)\times \dfrac{1}{\sin \alpha \cos \alpha }=\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }$.
We break the individual terms and get $\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{\sin \alpha }{\sin \alpha \cos \alpha }+\dfrac{\cos \alpha }{\sin \alpha \cos \alpha }$.
Bu eliminating common terms we get $\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }$
We know that the relations for inverse are $\dfrac{1}{\cos \alpha }=\sec \alpha ,\dfrac{1}{\sin \alpha }=\csc \alpha $
The equation becomes $\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }=\sec \alpha +\csc \alpha $.
Thus proved $\left( \sin \alpha +\cos \alpha \right)\left( \tan \alpha +\cot \alpha \right)=\sec \alpha +\csc \alpha $.
Note: It is important to remember the condition to eliminate the \[\cos \alpha ,\sin \alpha \] from both denominator and numerator. No domain is given for the variable $x$. The value of $\tan x\ne 0$ is essential. The simplified condition will be $x\ne n\pi ,n\in \mathbb{Z}$.
Complete step-by-step solution:
We simplify the addition part of $\left( \tan \alpha +\cot \alpha \right)$ by breaking it as $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$ and $\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }$. We replace the values as and get
$\begin{align}
& \left( \tan \alpha +\cot \alpha \right) \\
& =\dfrac{\sin \alpha }{\cos \alpha }+\dfrac{\cos \alpha }{\sin \alpha } \\
& =\dfrac{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha }{\sin \alpha \cos \alpha } \\
\end{align}$
We replace the value with $\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)=1$.
Therefore, $\left( \tan \alpha +\cot \alpha \right)=\dfrac{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\sin \alpha \cos \alpha }$
We multiply $\dfrac{1}{\sin \alpha \cos \alpha }$ with $\left( \sin \alpha +\cos \alpha \right)$.
So, $\left( \sin \alpha +\cos \alpha \right)\times \dfrac{1}{\sin \alpha \cos \alpha }=\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }$.
We break the individual terms and get $\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{\sin \alpha }{\sin \alpha \cos \alpha }+\dfrac{\cos \alpha }{\sin \alpha \cos \alpha }$.
Bu eliminating common terms we get $\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }$
We know that the relations for inverse are $\dfrac{1}{\cos \alpha }=\sec \alpha ,\dfrac{1}{\sin \alpha }=\csc \alpha $
The equation becomes $\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }=\sec \alpha +\csc \alpha $.
Thus proved $\left( \sin \alpha +\cos \alpha \right)\left( \tan \alpha +\cot \alpha \right)=\sec \alpha +\csc \alpha $.
Note: It is important to remember the condition to eliminate the \[\cos \alpha ,\sin \alpha \] from both denominator and numerator. No domain is given for the variable $x$. The value of $\tan x\ne 0$ is essential. The simplified condition will be $x\ne n\pi ,n\in \mathbb{Z}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

