
Prove that: - \[\left( \sin {{55}^{\circ }}-\sin {{19}^{\circ }} \right)+\left( \sin {{53}^{\circ }}-\sin {{17}^{\circ }} \right)=\cos {{1}^{\circ }}\].
Answer
575.7k+ views
Hint: Arrange the terms and group \[\sin {{55}^{\circ }}\] and \[\sin {{53}^{\circ }}\] together and \[\sin {{19}^{\circ }}\] and \[\sin {{17}^{\circ }}\] together. Now, apply the formula \[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] to simplify the terms. Take common terms together and use the formula, \[\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\] for further simplification. Finally, substitute the value, \[\sin {{18}^{\circ }}=\dfrac{\sqrt{5}-1}{4}\] to get the answer.
Complete step-by-step solution
Here, we have to prove the expression: -
\[\Rightarrow \left( \sin {{55}^{\circ }}-\sin {{19}^{\circ }} \right)+\left( \sin {{53}^{\circ }}-\sin {{17}^{\circ }} \right)=\cos {{1}^{\circ }}\]
Let us consider L.H.S., so we have,
\[\Rightarrow \] L.H.S. = \[\left( \sin {{55}^{\circ }}-\sin {{19}^{\circ }} \right)+\left( \sin {{53}^{\circ }}-\sin {{17}^{\circ }} \right)\]
Rearranging the sine terms, we get,
\[\Rightarrow \] L.H.S. = \[\left( \sin {{55}^{\circ }}+\sin {{53}^{\circ }} \right)-\left( \sin {{19}^{\circ }}+\sin {{17}^{\circ }} \right)\]
Applying the identity: - \[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\], we get,
\[\Rightarrow \] L.H.S. = \[2\sin \left( \dfrac{{{55}^{\circ }}+{{53}^{\circ }}}{2} \right)\cos \left( \dfrac{{{55}^{\circ }}-{{53}^{\circ }}}{2} \right)-2\sin \left( \dfrac{{{19}^{\circ }}+{{17}^{\circ }}}{2} \right)\cos \left( \dfrac{{{19}^{\circ }}-{{17}^{\circ }}}{2} \right)\]
\[\Rightarrow \] L.H.S. = \[2\sin {{54}^{\circ }}\cos {{1}^{\circ }}-2\sin {{18}^{\circ }}\cos {{1}^{\circ }}\]
Now, taking common terms together, we get,
\[\Rightarrow \] L.H.S. = \[2\cos {{1}^{\circ }}\left( \sin {{54}^{\circ }}-\sin {{18}^{\circ }} \right)\]
Applying the identity: - \[\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\], we get,
\[\Rightarrow \] L.H.S. = \[2\cos {{1}^{\circ }}\times 2\cos \left( \dfrac{{{54}^{\circ }}+{{18}^{\circ }}}{2} \right)\sin \left( \dfrac{{{54}^{\circ }}-{{18}^{\circ }}}{2} \right)\]
\[\Rightarrow \] L.H.S. = \[2\cos {{1}^{\circ }}\times 2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\]
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left( \cos \left( 2\times {{18}^{\circ }} \right)\sin {{18}^{\circ }} \right)\]
Using the half angle property of cosine function given by: - \[\cos 2\theta =1-2{{\sin }^{2}}\theta \], we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left( 1-2{{\sin }^{2}}{{18}^{\circ }} \right)\times \sin {{18}^{\circ }} \right]\]
Substituting the value of \[\sin {{18}^{\circ }}=\dfrac{\sqrt{5}-1}{4}\], we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left( 1-2\times {{\left( \dfrac{\sqrt{5}-1}{4} \right)}^{2}} \right)\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
Using the algebraic identity given as: - \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\], we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left\{ 1-2\times \left( \dfrac{5+1-2\sqrt{5}}{16} \right) \right\}\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left\{ 1-\left( \dfrac{6-2\sqrt{5}}{8} \right) \right\}\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
Taking L.C.M inside the curly bracket, we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left( \dfrac{8-6+2\sqrt{5}}{8} \right)\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \left[ \left( \dfrac{2+2\sqrt{5}}{8} \right)\times \left( \sqrt{5}-1 \right) \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \left[ \left( \dfrac{\sqrt{5}+1}{4} \right)\times \left( \sqrt{5}-1 \right) \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times \left[ \left( \sqrt{5}+1 \right)\times \left( \sqrt{5}-1 \right) \right]\]
Using the identity: - \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we get,
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times \left[ {{\left( \sqrt{5} \right)}^{2}}-{{1}^{2}} \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times \left[ 5-1 \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times 4\]
Canceling the common factors, we get,
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\] = R.H.S
Hence proved
Note: One may note that we have grouped \[\sin {{55}^{\circ }},\sin {{53}^{\circ }}\] and \[\sin {{19}^{\circ }},\sin {{17}^{\circ }}\] together. This is done to make the calculation easy. We can also group the terms as given in the question and proceed directly, but then we would have to encounter some hard calculation. Also note that the value of \[\sin {{18}^{\circ }},\cos {{18}^{\circ }},\sin {{36}^{\circ }},\cos {{36}^{\circ }},\sin {{54}^{\circ }}\] etc must be remembered. At many places we need their values and it is not given in the question just like the above one.
Complete step-by-step solution
Here, we have to prove the expression: -
\[\Rightarrow \left( \sin {{55}^{\circ }}-\sin {{19}^{\circ }} \right)+\left( \sin {{53}^{\circ }}-\sin {{17}^{\circ }} \right)=\cos {{1}^{\circ }}\]
Let us consider L.H.S., so we have,
\[\Rightarrow \] L.H.S. = \[\left( \sin {{55}^{\circ }}-\sin {{19}^{\circ }} \right)+\left( \sin {{53}^{\circ }}-\sin {{17}^{\circ }} \right)\]
Rearranging the sine terms, we get,
\[\Rightarrow \] L.H.S. = \[\left( \sin {{55}^{\circ }}+\sin {{53}^{\circ }} \right)-\left( \sin {{19}^{\circ }}+\sin {{17}^{\circ }} \right)\]
Applying the identity: - \[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\], we get,
\[\Rightarrow \] L.H.S. = \[2\sin \left( \dfrac{{{55}^{\circ }}+{{53}^{\circ }}}{2} \right)\cos \left( \dfrac{{{55}^{\circ }}-{{53}^{\circ }}}{2} \right)-2\sin \left( \dfrac{{{19}^{\circ }}+{{17}^{\circ }}}{2} \right)\cos \left( \dfrac{{{19}^{\circ }}-{{17}^{\circ }}}{2} \right)\]
\[\Rightarrow \] L.H.S. = \[2\sin {{54}^{\circ }}\cos {{1}^{\circ }}-2\sin {{18}^{\circ }}\cos {{1}^{\circ }}\]
Now, taking common terms together, we get,
\[\Rightarrow \] L.H.S. = \[2\cos {{1}^{\circ }}\left( \sin {{54}^{\circ }}-\sin {{18}^{\circ }} \right)\]
Applying the identity: - \[\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\], we get,
\[\Rightarrow \] L.H.S. = \[2\cos {{1}^{\circ }}\times 2\cos \left( \dfrac{{{54}^{\circ }}+{{18}^{\circ }}}{2} \right)\sin \left( \dfrac{{{54}^{\circ }}-{{18}^{\circ }}}{2} \right)\]
\[\Rightarrow \] L.H.S. = \[2\cos {{1}^{\circ }}\times 2\cos {{36}^{\circ }}\sin {{18}^{\circ }}\]
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left( \cos \left( 2\times {{18}^{\circ }} \right)\sin {{18}^{\circ }} \right)\]
Using the half angle property of cosine function given by: - \[\cos 2\theta =1-2{{\sin }^{2}}\theta \], we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left( 1-2{{\sin }^{2}}{{18}^{\circ }} \right)\times \sin {{18}^{\circ }} \right]\]
Substituting the value of \[\sin {{18}^{\circ }}=\dfrac{\sqrt{5}-1}{4}\], we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left( 1-2\times {{\left( \dfrac{\sqrt{5}-1}{4} \right)}^{2}} \right)\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
Using the algebraic identity given as: - \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\], we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left\{ 1-2\times \left( \dfrac{5+1-2\sqrt{5}}{16} \right) \right\}\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left\{ 1-\left( \dfrac{6-2\sqrt{5}}{8} \right) \right\}\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
Taking L.C.M inside the curly bracket, we get,
\[\Rightarrow \] L.H.S. = \[4\cos {{1}^{\circ }}\times \left[ \left( \dfrac{8-6+2\sqrt{5}}{8} \right)\times \left( \dfrac{\sqrt{5}-1}{4} \right) \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \left[ \left( \dfrac{2+2\sqrt{5}}{8} \right)\times \left( \sqrt{5}-1 \right) \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \left[ \left( \dfrac{\sqrt{5}+1}{4} \right)\times \left( \sqrt{5}-1 \right) \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times \left[ \left( \sqrt{5}+1 \right)\times \left( \sqrt{5}-1 \right) \right]\]
Using the identity: - \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we get,
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times \left[ {{\left( \sqrt{5} \right)}^{2}}-{{1}^{2}} \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times \left[ 5-1 \right]\]
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\times \dfrac{1}{4}\times 4\]
Canceling the common factors, we get,
\[\Rightarrow \] L.H.S. = \[\cos {{1}^{\circ }}\] = R.H.S
Hence proved
Note: One may note that we have grouped \[\sin {{55}^{\circ }},\sin {{53}^{\circ }}\] and \[\sin {{19}^{\circ }},\sin {{17}^{\circ }}\] together. This is done to make the calculation easy. We can also group the terms as given in the question and proceed directly, but then we would have to encounter some hard calculation. Also note that the value of \[\sin {{18}^{\circ }},\cos {{18}^{\circ }},\sin {{36}^{\circ }},\cos {{36}^{\circ }},\sin {{54}^{\circ }}\] etc must be remembered. At many places we need their values and it is not given in the question just like the above one.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

