
How do you prove that $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right) = 2\sec x?$
Answer
542.1k+ views
Hint: Consider the LHS of the given question. Start by taking the LCM of the two terms. Multiply and simplify the expression using the identity ${\cos ^2}x + {\sin ^2}x = 1$. The final expression can be obtained by using the conversion $\dfrac{1}{{\cos x}} = \sec x$.
Complete Step by Step Solution:
We need to prove $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right) = 2\sec x$
To prove the expression, we simply need to prove LHS=RHS.
LHS: $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)$
Taking the LCM of the terms
$ = \dfrac{{\left( {\cos x} \right)\left( {\cos x} \right) + \left( {1 + \sin x} \right)\left( {1 + \sin x} \right)}}{{\left( {1 + \sin x} \right)\left( {\cos x} \right)}}$
Multiplying the terms in the numerator
$ = \dfrac{{{{\cos }^2}x + \left( {1 + \sin x + \sin x + {{\sin }^2}x} \right)}}{{\left( {1 + \sin x} \right)\left( {\cos x} \right)}}$
$ = \dfrac{{{{\cos }^2}x + 1 + 2\sin x + {{\sin }^2}x}}{{(1 + \sin x)(\cos x)}}$
Using the identity ${\cos ^2}x + {\sin ^2}x = 1$ the expression can be simplified as
$ = \dfrac{{1 + 1 + 2\sin x}}{{(1 + \sin x)(\cos x)}}$
$ = \dfrac{{2 + 2\sin x}}{{(1 + \sin x)(\cos x)}}$
Taking 2 common from both the terms in the numerator the equation becomes
$ = \dfrac{{2(1 + \sin x)}}{{(1 + \sin x)(\cos x)}}$
Now, we have $(1 + \sin x)$ common in both the numerator and denominator. Cancelling the common terms
$ = \dfrac{2}{{\cos x}}$
Using the conversion $\dfrac{1}{{\cos x}} = \sec x$ the expression can be re-written as
$ = 2\sec x$ = RHS
LHS=RHS. Hence, Proved.
Note:
Alternate Method:
We need to prove $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right) = 2\sec x$
To prove the expression, we simply need to prove LHS=RHS.
LHS: $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)$
Multiplying and dividing each term by $(1 - \sin x)$
$ = \dfrac{{\cos x\left( {1 - \sin x} \right)}}{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}} + \dfrac{{(1 + \sin x)(1 - \sin x)}}{{\cos x(1 - \sin x)}}$
Using the identity $(a + b)(a - b) = {a^2} - {b^2}$ to simplify the denominator of the first term and the denominator of the second term
$ = \dfrac{{\cos x(1 - \sin x)}}{{1 - {{\sin }^2}x}} + \dfrac{{1 - {{\sin }^2}x}}{{\cos x(1 - \sin x)}}$
We can use the identity $1 - {\sin ^2}x = {\cos ^2}x$ to write the equation as
$ = \dfrac{{\cos x(1 - \sin x)}}{{{{\cos }^2}x}} + \dfrac{{{{\cos }^2}x}}{{\cos x(1 - \sin x)}}$
Cancelling the common terms in the numerator and denominator of both the terms
$ = \dfrac{{(1 - \sin x)}}{{\cos x}} + \dfrac{{\cos x}}{{(1 - \sin x)}}$
Taking the LCM of the terms and multiplying
$ = \dfrac{{{{(1 - \sin x)}^2} + {{\cos }^2}x}}{{\cos x(1 - \sin x)}}$
Using the identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$ , we can expand
$ = \dfrac{{1 - 2\sin x + {{\sin }^2}x + {{\cos }^2}x}}{{\cos x(1 - \sin x)}}$
Using the identity ${\cos ^2}x + {\sin ^2}x = 1$ the expression can be simplified as
$ = \dfrac{{1 - 2\sin x + 1}}{{\cos x(1 - \sin x)}}$
$ = \dfrac{{2 - 2\sin x}}{{\cos x(1 - \sin x)}}$
Taking 2 common from both the terms in the numerator the equation becomes
$ = \dfrac{{2(1 - \sin x)}}{{\cos x(1 - \sin x)}}$
Now, we have $(1 - \sin x)$ common in both the numerator and denominator. Cancelling the common terms
$ = \dfrac{2}{{\cos x}}$
Using the conversion $\dfrac{1}{{\cos x}} = \sec x$ the expression can be re-written as
$ = 2\sec x$ = RHS
LHS=RHS. Hence, Proved.
Complete Step by Step Solution:
We need to prove $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right) = 2\sec x$
To prove the expression, we simply need to prove LHS=RHS.
LHS: $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)$
Taking the LCM of the terms
$ = \dfrac{{\left( {\cos x} \right)\left( {\cos x} \right) + \left( {1 + \sin x} \right)\left( {1 + \sin x} \right)}}{{\left( {1 + \sin x} \right)\left( {\cos x} \right)}}$
Multiplying the terms in the numerator
$ = \dfrac{{{{\cos }^2}x + \left( {1 + \sin x + \sin x + {{\sin }^2}x} \right)}}{{\left( {1 + \sin x} \right)\left( {\cos x} \right)}}$
$ = \dfrac{{{{\cos }^2}x + 1 + 2\sin x + {{\sin }^2}x}}{{(1 + \sin x)(\cos x)}}$
Using the identity ${\cos ^2}x + {\sin ^2}x = 1$ the expression can be simplified as
$ = \dfrac{{1 + 1 + 2\sin x}}{{(1 + \sin x)(\cos x)}}$
$ = \dfrac{{2 + 2\sin x}}{{(1 + \sin x)(\cos x)}}$
Taking 2 common from both the terms in the numerator the equation becomes
$ = \dfrac{{2(1 + \sin x)}}{{(1 + \sin x)(\cos x)}}$
Now, we have $(1 + \sin x)$ common in both the numerator and denominator. Cancelling the common terms
$ = \dfrac{2}{{\cos x}}$
Using the conversion $\dfrac{1}{{\cos x}} = \sec x$ the expression can be re-written as
$ = 2\sec x$ = RHS
LHS=RHS. Hence, Proved.
Note:
Alternate Method:
We need to prove $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right) = 2\sec x$
To prove the expression, we simply need to prove LHS=RHS.
LHS: $\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) + \left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)$
Multiplying and dividing each term by $(1 - \sin x)$
$ = \dfrac{{\cos x\left( {1 - \sin x} \right)}}{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}} + \dfrac{{(1 + \sin x)(1 - \sin x)}}{{\cos x(1 - \sin x)}}$
Using the identity $(a + b)(a - b) = {a^2} - {b^2}$ to simplify the denominator of the first term and the denominator of the second term
$ = \dfrac{{\cos x(1 - \sin x)}}{{1 - {{\sin }^2}x}} + \dfrac{{1 - {{\sin }^2}x}}{{\cos x(1 - \sin x)}}$
We can use the identity $1 - {\sin ^2}x = {\cos ^2}x$ to write the equation as
$ = \dfrac{{\cos x(1 - \sin x)}}{{{{\cos }^2}x}} + \dfrac{{{{\cos }^2}x}}{{\cos x(1 - \sin x)}}$
Cancelling the common terms in the numerator and denominator of both the terms
$ = \dfrac{{(1 - \sin x)}}{{\cos x}} + \dfrac{{\cos x}}{{(1 - \sin x)}}$
Taking the LCM of the terms and multiplying
$ = \dfrac{{{{(1 - \sin x)}^2} + {{\cos }^2}x}}{{\cos x(1 - \sin x)}}$
Using the identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$ , we can expand
$ = \dfrac{{1 - 2\sin x + {{\sin }^2}x + {{\cos }^2}x}}{{\cos x(1 - \sin x)}}$
Using the identity ${\cos ^2}x + {\sin ^2}x = 1$ the expression can be simplified as
$ = \dfrac{{1 - 2\sin x + 1}}{{\cos x(1 - \sin x)}}$
$ = \dfrac{{2 - 2\sin x}}{{\cos x(1 - \sin x)}}$
Taking 2 common from both the terms in the numerator the equation becomes
$ = \dfrac{{2(1 - \sin x)}}{{\cos x(1 - \sin x)}}$
Now, we have $(1 - \sin x)$ common in both the numerator and denominator. Cancelling the common terms
$ = \dfrac{2}{{\cos x}}$
Using the conversion $\dfrac{1}{{\cos x}} = \sec x$ the expression can be re-written as
$ = 2\sec x$ = RHS
LHS=RHS. Hence, Proved.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

