
Prove that:
\[{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }\]
Answer
615k+ views
Hint: Take the LHS of the expression. Substitute basic trigonometric formulas and convert the expression in terms of \[\sin \theta \] and \[\cos \theta \]. Thus simplify it using basic formulas of sine and cosine function.
Complete step-by-step answer:
We have been given the expression, \[{{\left( \csc \theta -\cot \theta \right)}^{2}}\], which we need to prove is equal to \[\left( \dfrac{1-\cos \theta }{1+\cos \theta } \right)\].
We know the basic trigonometric formulas,
\[\csc \theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]
Now let us substitute these basic trigonometric formulas in the expression, \[{{\left( \csc \theta -\cot \theta \right)}^{2}}\].
\[{{\left( \csc \theta -\cot \theta \right)}^{2}}={{\left( \dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta } \right)}^{2}}\]
\[\begin{align}
& ={{\left( \dfrac{1-\cos \theta }{\sin \theta } \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\left( \sin \theta \right)}^{2}}} \\
& =\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\sin }^{2}}\theta } \\
\end{align}\]
We know that, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\].
Thus we can write that, \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \].
Now let us put the value of \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \] in the above expression.
\[\therefore {{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{1-{{\cos }^{2}}\theta }\]
We know the formula, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[1-{{\cos }^{2}}\theta ={{1}^{2}}-{{\cos }^{2}}\theta \]
\[=\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)\]
\[\therefore {{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{1}^{2}}-{{\cos }^{2}}\theta }\]
\[=\dfrac{\left( 1-\cos \theta \right)\left( 1-\cos \theta \right)}{\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)}\]
Cancel out \[\left( 1-\cos \theta \right)\] from the numerator and the denominator.
\[{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }\]
Thus we proved that, \[{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }\].
Hence proved
Note: To solve this question or the similar type of questions we need to know the basic trigonometric properties and formulas of the functions which are used. If we know these formulas it is easy to solve. Trigonometry is an important portion in mathematics, so learn the basic formulas.
Complete step-by-step answer:
We have been given the expression, \[{{\left( \csc \theta -\cot \theta \right)}^{2}}\], which we need to prove is equal to \[\left( \dfrac{1-\cos \theta }{1+\cos \theta } \right)\].
We know the basic trigonometric formulas,
\[\csc \theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]
Now let us substitute these basic trigonometric formulas in the expression, \[{{\left( \csc \theta -\cot \theta \right)}^{2}}\].
\[{{\left( \csc \theta -\cot \theta \right)}^{2}}={{\left( \dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta } \right)}^{2}}\]
\[\begin{align}
& ={{\left( \dfrac{1-\cos \theta }{\sin \theta } \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\left( \sin \theta \right)}^{2}}} \\
& =\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\sin }^{2}}\theta } \\
\end{align}\]
We know that, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\].
Thus we can write that, \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \].
Now let us put the value of \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \] in the above expression.
\[\therefore {{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{1-{{\cos }^{2}}\theta }\]
We know the formula, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[1-{{\cos }^{2}}\theta ={{1}^{2}}-{{\cos }^{2}}\theta \]
\[=\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)\]
\[\therefore {{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{1}^{2}}-{{\cos }^{2}}\theta }\]
\[=\dfrac{\left( 1-\cos \theta \right)\left( 1-\cos \theta \right)}{\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)}\]
Cancel out \[\left( 1-\cos \theta \right)\] from the numerator and the denominator.
\[{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }\]
Thus we proved that, \[{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }\].
Hence proved
Note: To solve this question or the similar type of questions we need to know the basic trigonometric properties and formulas of the functions which are used. If we know these formulas it is easy to solve. Trigonometry is an important portion in mathematics, so learn the basic formulas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

