
Prove that ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta $.
Answer
520.2k+ views
Hint: Here, we will proceed by using the formula i.e., when $\left( {a + b + c = 0} \right)$ then ${a^3} + {b^3} + {c^3} = 3abc$. Then, we will use the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in order to obtain the required equation which needs to be proved.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

State BPT theorem and prove it class 10 maths CBSE
