Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Prove that ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta $.

Answer
VerifiedVerified
520.2k+ views
Hint: Here, we will proceed by using the formula i.e., when $\left( {a + b + c = 0} \right)$ then ${a^3} + {b^3} + {c^3} = 3abc$. Then, we will use the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in order to obtain the required equation which needs to be proved.

Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
  {a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
   \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
   \Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
 $
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
   \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
   \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
   \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
 $
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
   \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
   \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
   \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
 $
Using the formula given by equation (2), we get
$
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
 $
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
 \]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
 \]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
  {\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
   \Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
 $ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
   \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
 \]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.

Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.