
Prove that ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta $.
Answer
589.5k+ views
Hint: Here, we will proceed by using the formula i.e., when $\left( {a + b + c = 0} \right)$ then ${a^3} + {b^3} + {c^3} = 3abc$. Then, we will use the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in order to obtain the required equation which needs to be proved.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

