
Prove that ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta $.
Answer
598.8k+ views
Hint: Here, we will proceed by using the formula i.e., when $\left( {a + b + c = 0} \right)$ then ${a^3} + {b^3} + {c^3} = 3abc$. Then, we will use the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in order to obtain the required equation which needs to be proved.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

