
Prove that ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta $.
Answer
617.4k+ views
Hint: Here, we will proceed by using the formula i.e., when $\left( {a + b + c = 0} \right)$ then ${a^3} + {b^3} + {c^3} = 3abc$. Then, we will use the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in order to obtain the required equation which needs to be proved.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Complete Step-by-Step solution:
To prove: ${\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta {\text{ }} \to {\text{(1)}}$
As we know that ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right)$
When $\left( {a + b + c = 0} \right)$, the above formula becomes
$
{a^3} + {b^3} + {c^3} - 3abc = \left( 0 \right)\left( {{a^2} + {b^2} + {c^2}} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0 \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc{\text{ }} \to {\text{(2)}} \\
$
Also we know that $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right){\text{ }} \to {\text{(3)}}$
Now, let us consider $\cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {\cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right)} \right]$
By using the formula given in equation (3) in the above equation, we get
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + \left[ {2\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) + \left( {{{240}^0} + \theta } \right)}}{2}} \right)\cos \left( {\dfrac{{\left( {{{120}^0} + \theta } \right) - \left( {{{240}^0} + \theta } \right)}}{2}} \right)} \right] \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {\dfrac{{{{360}^0} + 2\theta }}{2}} \right)\cos \left( {\dfrac{{ - {{120}^0}}}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta + 2\cos \left( {{{180}^0} + \theta } \right)\cos \left( { - {{60}^0}} \right) \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ and $\cos \left( { - \alpha } \right) = \cos \alpha $ in the above equation, we get
$ \Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\cos {{60}^0}} \right){\text{ }} \to {\text{(4)}}$
According to the general trigonometric table, $\cos {60^0} = \dfrac{1}{2}$
By using $\cos {60^0} = \dfrac{1}{2}$, equation (4) becomes
$
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - 2\left( {\cos \theta } \right)\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = \cos \theta - \cos \theta \\
\Rightarrow \cos \theta + \cos \left( {{{120}^0} + \theta } \right) + \cos \left( {{{240}^0} + \theta } \right) = 0{\text{ }} \to {\text{(5)}} \\
$
Using the formula given by equation (2), we get
$
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} - {{60}^0} + \theta } \right)} \right]\left[ {\cos \left( {{{180}^0} + {{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta - {{60}^0}} \right)} \right)} \right]\left[ {\cos \left( {{{180}^0} + \left( {\theta + {{60}^0}} \right)} \right)} \right] \\
$
Using the formulas $\cos \left( {{{180}^0} + \alpha } \right) = - \cos \alpha $ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ { - \cos \left( {\theta - {{60}^0}} \right)} \right]\left[ { - \cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {\theta - {{60}^0}} \right)} \right]\left[ {\cos \left( {\theta + {{60}^0}} \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( { - \left( {{{60}^0} - \theta } \right)} \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\]
Using the formula $\cos \left( { - \alpha } \right) = \cos \alpha $, the above equation becomes
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} - \theta } \right)} \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\cos \left( {{{60}^0} + \theta } \right)\cos \left( {{{60}^0} - \theta } \right)} \right] \\
\]
Using the formula $\cos \left( {{\text{A}} + {\text{B}}} \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = {\left( {\cos {\text{A}}} \right)^2} - {\left( {\sin {\text{A}}} \right)^2}$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the formula $
{\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \alpha } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} \\
$ in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\cos {{60}^0}} \right)}^2} - \left( {1 - {{\left( {\cos \theta } \right)}^2}} \right)} \right]\]
Using $\cos {60^0} = \dfrac{1}{2}$ in the above equation, we get
\[
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {{{\left( {\dfrac{1}{2}} \right)}^2} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{1}{4} - 1 + {{\left( {\cos \theta } \right)}^2}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{1 - 4 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\cos \theta } \right]\left[ {\dfrac{{ - 3 + 4{{\left( {\cos \theta } \right)}^2}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = 3\left[ {\dfrac{{ - 3\left( {\cos \theta } \right) + 4{{\left( {\cos \theta } \right)}^3}}}{4}} \right] \\
\Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\]
Using the formula \[4{\left( {\cos \alpha } \right)^3} - 3\cos \alpha = \cos 3\alpha \] in the above equation, we get
\[ \Rightarrow {\left[ {\cos \theta } \right]^3} + {\left[ {\cos \left( {{{120}^0} + \theta } \right)} \right]^3} + {\left[ {\cos \left( {{{240}^0} + \theta } \right)} \right]^3} = \dfrac{3}{4}\cos 3\theta \]
Clearly, the above equation obtained is the same as the equation which was needed to be proved i.e., equation (1). Hence, we have proved the required equation.
Note: In this particular problem, the equation which needs to be proved is actually the sum of cubes of three trigonometric functions. Here, if we sum these three trigonometric functions we will get to know that their sum comes to be zero which resembles with the formula ${a^3} + {b^3} + {c^3} = 3abc$ where $\left( {a + b + c = 0} \right)$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

