
Prove that ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$.
Answer
512.7k+ views
Hint: For solving this problem, first we consider the left- hand side and expand it by using algebraic identities of ${{\left( a+b \right)}^{2}}\text{ and }{{\left( a-b \right)}^{2}}$. Now, we try to obtain a relationship in terms of angle (A +B) by applying suitable identities and expansion related to $\sin \theta \text{ and }\cos \theta $. By doing so, we obtain the term given on the right-hand side of the expression.
Complete step-by-step solution -
According to the problem statement, we are given expression ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$. First, we consider the left-hand of the expression and try to expand it by using the algebraic identities which can be stated as:
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
So, \[{{\left( \cos A+\cos B \right)}^{2}}\] can be expanded as \[{{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)\] and \[{{\left( \sin A-\sin B \right)}^{2}}\] can be expanded as \[{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right)\]. Putting these values in left-hand side, we get
\[\begin{align}
& \Rightarrow {{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)+{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Now, we rearrange the terms to separate A and B as,
\[\Rightarrow \left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+\left( {{\cos }^{2}}B+{{\sin }^{2}}B \right)+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right)\]
Now, by using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\begin{align}
& \Rightarrow 1+1+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right] \\
\end{align}\]
Now, by using the identity \[\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right)=\cos \left( A+B \right)\], we get
\[\Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right]=2\left( 1+\cos \left( A+B \right) \right)\]
Again, by using the identity $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$, we get
$\Rightarrow 2\left( 1+\cos \left( A+B \right) \right)=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$
So, the above obtained result is the same as given in the right-hand side of the problem expression. Hence, we proved the equivalence of left and right-hand sides.
Note: This problem can be alternatively solved by expanding $\sin A-\sin B\text{ and }\cos A+\cos B$ using the angle to multiplication property which can be stated as $\left[ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\text{ and }\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \right]$. Now, by squaring the above part individually and then adding, we obtain the same result as obtained above.
Complete step-by-step solution -
According to the problem statement, we are given expression ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$. First, we consider the left-hand of the expression and try to expand it by using the algebraic identities which can be stated as:
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
So, \[{{\left( \cos A+\cos B \right)}^{2}}\] can be expanded as \[{{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)\] and \[{{\left( \sin A-\sin B \right)}^{2}}\] can be expanded as \[{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right)\]. Putting these values in left-hand side, we get
\[\begin{align}
& \Rightarrow {{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)+{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Now, we rearrange the terms to separate A and B as,
\[\Rightarrow \left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+\left( {{\cos }^{2}}B+{{\sin }^{2}}B \right)+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right)\]
Now, by using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\begin{align}
& \Rightarrow 1+1+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right] \\
\end{align}\]
Now, by using the identity \[\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right)=\cos \left( A+B \right)\], we get
\[\Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right]=2\left( 1+\cos \left( A+B \right) \right)\]
Again, by using the identity $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$, we get
$\Rightarrow 2\left( 1+\cos \left( A+B \right) \right)=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$
So, the above obtained result is the same as given in the right-hand side of the problem expression. Hence, we proved the equivalence of left and right-hand sides.
Note: This problem can be alternatively solved by expanding $\sin A-\sin B\text{ and }\cos A+\cos B$ using the angle to multiplication property which can be stated as $\left[ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\text{ and }\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \right]$. Now, by squaring the above part individually and then adding, we obtain the same result as obtained above.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
