
Prove that ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$.
Answer
597.3k+ views
Hint: For solving this problem, first we consider the left- hand side and expand it by using algebraic identities of ${{\left( a+b \right)}^{2}}\text{ and }{{\left( a-b \right)}^{2}}$. Now, we try to obtain a relationship in terms of angle (A +B) by applying suitable identities and expansion related to $\sin \theta \text{ and }\cos \theta $. By doing so, we obtain the term given on the right-hand side of the expression.
Complete step-by-step solution -
According to the problem statement, we are given expression ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$. First, we consider the left-hand of the expression and try to expand it by using the algebraic identities which can be stated as:
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
So, \[{{\left( \cos A+\cos B \right)}^{2}}\] can be expanded as \[{{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)\] and \[{{\left( \sin A-\sin B \right)}^{2}}\] can be expanded as \[{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right)\]. Putting these values in left-hand side, we get
\[\begin{align}
& \Rightarrow {{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)+{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Now, we rearrange the terms to separate A and B as,
\[\Rightarrow \left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+\left( {{\cos }^{2}}B+{{\sin }^{2}}B \right)+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right)\]
Now, by using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\begin{align}
& \Rightarrow 1+1+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right] \\
\end{align}\]
Now, by using the identity \[\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right)=\cos \left( A+B \right)\], we get
\[\Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right]=2\left( 1+\cos \left( A+B \right) \right)\]
Again, by using the identity $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$, we get
$\Rightarrow 2\left( 1+\cos \left( A+B \right) \right)=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$
So, the above obtained result is the same as given in the right-hand side of the problem expression. Hence, we proved the equivalence of left and right-hand sides.
Note: This problem can be alternatively solved by expanding $\sin A-\sin B\text{ and }\cos A+\cos B$ using the angle to multiplication property which can be stated as $\left[ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\text{ and }\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \right]$. Now, by squaring the above part individually and then adding, we obtain the same result as obtained above.
Complete step-by-step solution -
According to the problem statement, we are given expression ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$. First, we consider the left-hand of the expression and try to expand it by using the algebraic identities which can be stated as:
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
So, \[{{\left( \cos A+\cos B \right)}^{2}}\] can be expanded as \[{{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)\] and \[{{\left( \sin A-\sin B \right)}^{2}}\] can be expanded as \[{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right)\]. Putting these values in left-hand side, we get
\[\begin{align}
& \Rightarrow {{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)+{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Now, we rearrange the terms to separate A and B as,
\[\Rightarrow \left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+\left( {{\cos }^{2}}B+{{\sin }^{2}}B \right)+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right)\]
Now, by using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\begin{align}
& \Rightarrow 1+1+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right] \\
\end{align}\]
Now, by using the identity \[\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right)=\cos \left( A+B \right)\], we get
\[\Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right]=2\left( 1+\cos \left( A+B \right) \right)\]
Again, by using the identity $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$, we get
$\Rightarrow 2\left( 1+\cos \left( A+B \right) \right)=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$
So, the above obtained result is the same as given in the right-hand side of the problem expression. Hence, we proved the equivalence of left and right-hand sides.
Note: This problem can be alternatively solved by expanding $\sin A-\sin B\text{ and }\cos A+\cos B$ using the angle to multiplication property which can be stated as $\left[ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\text{ and }\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \right]$. Now, by squaring the above part individually and then adding, we obtain the same result as obtained above.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

