
Prove that ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$.
Answer
611.7k+ views
Hint: For solving this problem, first we consider the left- hand side and expand it by using algebraic identities of ${{\left( a+b \right)}^{2}}\text{ and }{{\left( a-b \right)}^{2}}$. Now, we try to obtain a relationship in terms of angle (A +B) by applying suitable identities and expansion related to $\sin \theta \text{ and }\cos \theta $. By doing so, we obtain the term given on the right-hand side of the expression.
Complete step-by-step solution -
According to the problem statement, we are given expression ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$. First, we consider the left-hand of the expression and try to expand it by using the algebraic identities which can be stated as:
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
So, \[{{\left( \cos A+\cos B \right)}^{2}}\] can be expanded as \[{{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)\] and \[{{\left( \sin A-\sin B \right)}^{2}}\] can be expanded as \[{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right)\]. Putting these values in left-hand side, we get
\[\begin{align}
& \Rightarrow {{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)+{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Now, we rearrange the terms to separate A and B as,
\[\Rightarrow \left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+\left( {{\cos }^{2}}B+{{\sin }^{2}}B \right)+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right)\]
Now, by using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\begin{align}
& \Rightarrow 1+1+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right] \\
\end{align}\]
Now, by using the identity \[\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right)=\cos \left( A+B \right)\], we get
\[\Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right]=2\left( 1+\cos \left( A+B \right) \right)\]
Again, by using the identity $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$, we get
$\Rightarrow 2\left( 1+\cos \left( A+B \right) \right)=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$
So, the above obtained result is the same as given in the right-hand side of the problem expression. Hence, we proved the equivalence of left and right-hand sides.
Note: This problem can be alternatively solved by expanding $\sin A-\sin B\text{ and }\cos A+\cos B$ using the angle to multiplication property which can be stated as $\left[ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\text{ and }\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \right]$. Now, by squaring the above part individually and then adding, we obtain the same result as obtained above.
Complete step-by-step solution -
According to the problem statement, we are given expression ${{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$. First, we consider the left-hand of the expression and try to expand it by using the algebraic identities which can be stated as:
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
So, \[{{\left( \cos A+\cos B \right)}^{2}}\] can be expanded as \[{{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)\] and \[{{\left( \sin A-\sin B \right)}^{2}}\] can be expanded as \[{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right)\]. Putting these values in left-hand side, we get
\[\begin{align}
& \Rightarrow {{\left( \cos A+\cos B \right)}^{2}}+{{\left( \sin A-\sin B \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B+2\left( \cos A \right)\left( \cos B \right)+{{\sin }^{2}}A+{{\sin }^{2}}B-2\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Now, we rearrange the terms to separate A and B as,
\[\Rightarrow \left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+\left( {{\cos }^{2}}B+{{\sin }^{2}}B \right)+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right)\]
Now, by using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[\begin{align}
& \Rightarrow 1+1+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2+2\left( \cos A \right)\left( \cos B \right)-2\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right] \\
\end{align}\]
Now, by using the identity \[\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right)=\cos \left( A+B \right)\], we get
\[\Rightarrow 2\left[ 1+\left( \cos A \right)\left( \cos B \right)-\left( \sin A \right)\left( \sin B \right) \right]=2\left( 1+\cos \left( A+B \right) \right)\]
Again, by using the identity $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$, we get
$\Rightarrow 2\left( 1+\cos \left( A+B \right) \right)=4{{\cos }^{2}}\left( \dfrac{A+B}{2} \right)$
So, the above obtained result is the same as given in the right-hand side of the problem expression. Hence, we proved the equivalence of left and right-hand sides.
Note: This problem can be alternatively solved by expanding $\sin A-\sin B\text{ and }\cos A+\cos B$ using the angle to multiplication property which can be stated as $\left[ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\text{ and }\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \right]$. Now, by squaring the above part individually and then adding, we obtain the same result as obtained above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

