
Prove that \[\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right) = \tan \left( {{2^n}\theta } \right) \cdot \cot \theta \]
Answer
547.5k+ views
Hint: To prove the given trigonometric functions, consider the LHS terms and apply the trigonometric identities functions in which as we know \[\sec 2\theta = \dfrac{1}{{\cos 2\theta }}\], in same way we can apply for \[\sec 4\theta \] and \[\sec 8\theta \], hence further simplifying the terms we get LHS = RHS.
Complete step by step solution:
\[\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right) = \tan \left( {{2^n}\theta } \right) \cdot \cot \theta \]
Let us consider the LHS terms as:
\[\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
Applying the trigonometric identities to the terms we, we know that \[\sec 2\theta = \dfrac{1}{{\cos 2\theta }}\], hence the equation is:
\[\left( {1 + \dfrac{1}{{\cos 2\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\left( {1 + \dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
Simplifying the trigonometric functions as:
\[\left( {\dfrac{2}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
Now multiply and divide the terms with \[\tan \theta \]
\[\dfrac{1}{{\tan \theta }}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \dfrac{1}{{\cos {2^2}\theta }}} \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\cot \theta \cdot \tan 2\theta \left( {1 + \dfrac{{1 + {{\tan }^2}2\theta }}{{1 - {{\tan }^2}2\theta }}} \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\cot \theta \left( {\dfrac{{2\tan 2\theta }}{{1 - {{\tan }^2}2\theta }}} \right)\left( {1 + \dfrac{1}{{\cos {2^3}\theta }}} \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\cot \theta \cdot \tan 4\theta \left( {1 + \dfrac{{1 + {{\tan }^2}4\theta }}{{1 - {{\tan }^2}4\theta }}} \right)......\left( {1 + \sec {2^2}\theta } \right)\]
If we go n times ellipse then
\[\cot \theta \cdot \tan {2^n}\theta \]
\[ \therefore\] \[\dfrac{{\tan {2^n}\theta }}{{\tan {2^0}\theta }}\] = RHS
As, LHS = RHS.Hence it is proved.
Note: The key point to prove trigonometric functions is that we must know all the trigonometric identity functions, to solve the terms in the given expression such that to prove LHS = RHS we must consider any of the terms of side and must know all the basic identities and relation between the trigonometric functions.
Complete step by step solution:
\[\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right) = \tan \left( {{2^n}\theta } \right) \cdot \cot \theta \]
Let us consider the LHS terms as:
\[\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
Applying the trigonometric identities to the terms we, we know that \[\sec 2\theta = \dfrac{1}{{\cos 2\theta }}\], hence the equation is:
\[\left( {1 + \dfrac{1}{{\cos 2\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\left( {1 + \dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
Simplifying the trigonometric functions as:
\[\left( {\dfrac{2}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
Now multiply and divide the terms with \[\tan \theta \]
\[\dfrac{1}{{\tan \theta }}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \dfrac{1}{{\cos {2^2}\theta }}} \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\cot \theta \cdot \tan 2\theta \left( {1 + \dfrac{{1 + {{\tan }^2}2\theta }}{{1 - {{\tan }^2}2\theta }}} \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\cot \theta \left( {\dfrac{{2\tan 2\theta }}{{1 - {{\tan }^2}2\theta }}} \right)\left( {1 + \dfrac{1}{{\cos {2^3}\theta }}} \right)......\left( {1 + \sec {2^n}\theta } \right)\]
\[\Rightarrow\cot \theta \cdot \tan 4\theta \left( {1 + \dfrac{{1 + {{\tan }^2}4\theta }}{{1 - {{\tan }^2}4\theta }}} \right)......\left( {1 + \sec {2^2}\theta } \right)\]
If we go n times ellipse then
\[\cot \theta \cdot \tan {2^n}\theta \]
\[ \therefore\] \[\dfrac{{\tan {2^n}\theta }}{{\tan {2^0}\theta }}\] = RHS
As, LHS = RHS.Hence it is proved.
Note: The key point to prove trigonometric functions is that we must know all the trigonometric identity functions, to solve the terms in the given expression such that to prove LHS = RHS we must consider any of the terms of side and must know all the basic identities and relation between the trigonometric functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

