
Prove that \[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{\cos e{c^2}A}} - \dfrac{{\cos ecA}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A\]
Answer
518.1k+ views
Hint: In this question first of all divide the given equation into 3 parts. Then solve part 1 to prove part 1 and 2 are equal and then solve part 2 to prove that part 2 and 3 are equal by using simple trigonometric ratios. By this we can say that all the three parts are equal to each other which is our required solution.
Complete step-by-step answer:
Divide the equation into three 3 parts do solve it easily.
Given LHS i.e., part 1 is \[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
\[ \Rightarrow \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
Writing the terms of cot and tan in terms of sin and cos we have
\[
\Rightarrow \left( {1 + \dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left( {\dfrac{{\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A}}{{\sin A\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left[ {\dfrac{{\left( {\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A} \right)\left( {\sin A - \cos A} \right)}}{{\sin A\cos A}}} \right] \\
\]
Multiplying the terms inside the brackets, we have
\[ \Rightarrow \left[ {\dfrac{{{{\sin }^2}A\cos A + \sin A{{\cos }^2}A + {{\sin }^3}A - \sin A{{\cos }^2}A - {{\cos }^3}A - {{\sin }^2}A\cos A}}{{\sin A\cos A}}} \right]\]
Cancelling the common terms, we have
\[ \Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A}}\]
Splitting the terms, we have
\[
\Rightarrow \dfrac{{{{\sin }^3}A}}{{\sin A\cos A}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A}} \\
\Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A}} - \dfrac{{{{\cos }^2}A}}{{\sin A}} \\
\]
Which can be written as
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\therefore \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}......................................\left( 1 \right) \\
\]
Now consider the part 2 i.e., \[\dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}\]
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\Rightarrow \dfrac{{\sec A}}{{\operatorname{cosec} A\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A\sec A}} \\
\Rightarrow \dfrac{1}{{\operatorname{cosec} A}} \times \dfrac{{\sec A}}{{\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A}} \times \dfrac{1}{{\sec A}} \\
\Rightarrow \sin A\tan A - \cot A\cos A \\
\therefore \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A....................................................\left( 2 \right) \\
\]
From equation (1) and (2) we have
\[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{\cos e{c^2}A}} - \dfrac{{\cos ecA}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A\]
Hence proved.
Note: Here we have used the trigonometric ratio conversions such as \[\dfrac{1}{{\operatorname{cosec} A}} = \sin A\], \[\dfrac{{\sec A}}{{\operatorname{cosec} A}} = \dfrac{{\sin A}}{{\cos A}} = \tan A\], \[\dfrac{{\operatorname{cosec} A}}{{secA}} = \dfrac{{\cos A}}{{\sin A}} = \cot A\], \[\dfrac{1}{{\sec A}} = \cos A\]. While multiplying the terms inside the brackets make sure that you have written all the terms multiplied in it.
Complete step-by-step answer:
Divide the equation into three 3 parts do solve it easily.
Given LHS i.e., part 1 is \[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
\[ \Rightarrow \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
Writing the terms of cot and tan in terms of sin and cos we have
\[
\Rightarrow \left( {1 + \dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left( {\dfrac{{\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A}}{{\sin A\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left[ {\dfrac{{\left( {\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A} \right)\left( {\sin A - \cos A} \right)}}{{\sin A\cos A}}} \right] \\
\]
Multiplying the terms inside the brackets, we have
\[ \Rightarrow \left[ {\dfrac{{{{\sin }^2}A\cos A + \sin A{{\cos }^2}A + {{\sin }^3}A - \sin A{{\cos }^2}A - {{\cos }^3}A - {{\sin }^2}A\cos A}}{{\sin A\cos A}}} \right]\]
Cancelling the common terms, we have
\[ \Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A}}\]
Splitting the terms, we have
\[
\Rightarrow \dfrac{{{{\sin }^3}A}}{{\sin A\cos A}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A}} \\
\Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A}} - \dfrac{{{{\cos }^2}A}}{{\sin A}} \\
\]
Which can be written as
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\therefore \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}......................................\left( 1 \right) \\
\]
Now consider the part 2 i.e., \[\dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}\]
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\Rightarrow \dfrac{{\sec A}}{{\operatorname{cosec} A\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A\sec A}} \\
\Rightarrow \dfrac{1}{{\operatorname{cosec} A}} \times \dfrac{{\sec A}}{{\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A}} \times \dfrac{1}{{\sec A}} \\
\Rightarrow \sin A\tan A - \cot A\cos A \\
\therefore \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A....................................................\left( 2 \right) \\
\]
From equation (1) and (2) we have
\[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{\cos e{c^2}A}} - \dfrac{{\cos ecA}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A\]
Hence proved.
Note: Here we have used the trigonometric ratio conversions such as \[\dfrac{1}{{\operatorname{cosec} A}} = \sin A\], \[\dfrac{{\sec A}}{{\operatorname{cosec} A}} = \dfrac{{\sin A}}{{\cos A}} = \tan A\], \[\dfrac{{\operatorname{cosec} A}}{{secA}} = \dfrac{{\cos A}}{{\sin A}} = \cot A\], \[\dfrac{1}{{\sec A}} = \cos A\]. While multiplying the terms inside the brackets make sure that you have written all the terms multiplied in it.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
