
Prove that \[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{\cos e{c^2}A}} - \dfrac{{\cos ecA}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A\]
Answer
600.3k+ views
Hint: In this question first of all divide the given equation into 3 parts. Then solve part 1 to prove part 1 and 2 are equal and then solve part 2 to prove that part 2 and 3 are equal by using simple trigonometric ratios. By this we can say that all the three parts are equal to each other which is our required solution.
Complete step-by-step answer:
Divide the equation into three 3 parts do solve it easily.
Given LHS i.e., part 1 is \[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
\[ \Rightarrow \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
Writing the terms of cot and tan in terms of sin and cos we have
\[
\Rightarrow \left( {1 + \dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left( {\dfrac{{\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A}}{{\sin A\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left[ {\dfrac{{\left( {\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A} \right)\left( {\sin A - \cos A} \right)}}{{\sin A\cos A}}} \right] \\
\]
Multiplying the terms inside the brackets, we have
\[ \Rightarrow \left[ {\dfrac{{{{\sin }^2}A\cos A + \sin A{{\cos }^2}A + {{\sin }^3}A - \sin A{{\cos }^2}A - {{\cos }^3}A - {{\sin }^2}A\cos A}}{{\sin A\cos A}}} \right]\]
Cancelling the common terms, we have
\[ \Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A}}\]
Splitting the terms, we have
\[
\Rightarrow \dfrac{{{{\sin }^3}A}}{{\sin A\cos A}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A}} \\
\Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A}} - \dfrac{{{{\cos }^2}A}}{{\sin A}} \\
\]
Which can be written as
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\therefore \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}......................................\left( 1 \right) \\
\]
Now consider the part 2 i.e., \[\dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}\]
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\Rightarrow \dfrac{{\sec A}}{{\operatorname{cosec} A\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A\sec A}} \\
\Rightarrow \dfrac{1}{{\operatorname{cosec} A}} \times \dfrac{{\sec A}}{{\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A}} \times \dfrac{1}{{\sec A}} \\
\Rightarrow \sin A\tan A - \cot A\cos A \\
\therefore \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A....................................................\left( 2 \right) \\
\]
From equation (1) and (2) we have
\[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{\cos e{c^2}A}} - \dfrac{{\cos ecA}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A\]
Hence proved.
Note: Here we have used the trigonometric ratio conversions such as \[\dfrac{1}{{\operatorname{cosec} A}} = \sin A\], \[\dfrac{{\sec A}}{{\operatorname{cosec} A}} = \dfrac{{\sin A}}{{\cos A}} = \tan A\], \[\dfrac{{\operatorname{cosec} A}}{{secA}} = \dfrac{{\cos A}}{{\sin A}} = \cot A\], \[\dfrac{1}{{\sec A}} = \cos A\]. While multiplying the terms inside the brackets make sure that you have written all the terms multiplied in it.
Complete step-by-step answer:
Divide the equation into three 3 parts do solve it easily.
Given LHS i.e., part 1 is \[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
\[ \Rightarrow \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right)\]
Writing the terms of cot and tan in terms of sin and cos we have
\[
\Rightarrow \left( {1 + \dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left( {\dfrac{{\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A}}{{\sin A\cos A}}} \right)\left( {\sin A - \cos A} \right) \\
\Rightarrow \left[ {\dfrac{{\left( {\sin A\cos A + {{\cos }^2}A + {{\sin }^2}A} \right)\left( {\sin A - \cos A} \right)}}{{\sin A\cos A}}} \right] \\
\]
Multiplying the terms inside the brackets, we have
\[ \Rightarrow \left[ {\dfrac{{{{\sin }^2}A\cos A + \sin A{{\cos }^2}A + {{\sin }^3}A - \sin A{{\cos }^2}A - {{\cos }^3}A - {{\sin }^2}A\cos A}}{{\sin A\cos A}}} \right]\]
Cancelling the common terms, we have
\[ \Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A}}\]
Splitting the terms, we have
\[
\Rightarrow \dfrac{{{{\sin }^3}A}}{{\sin A\cos A}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A}} \\
\Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A}} - \dfrac{{{{\cos }^2}A}}{{\sin A}} \\
\]
Which can be written as
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\therefore \left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}......................................\left( 1 \right) \\
\]
Now consider the part 2 i.e., \[\dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}}\]
\[
\Rightarrow \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} \\
\Rightarrow \dfrac{{\sec A}}{{\operatorname{cosec} A\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A\sec A}} \\
\Rightarrow \dfrac{1}{{\operatorname{cosec} A}} \times \dfrac{{\sec A}}{{\operatorname{cosec} A}} - \dfrac{{\operatorname{cosec} A}}{{\sec A}} \times \dfrac{1}{{\sec A}} \\
\Rightarrow \sin A\tan A - \cot A\cos A \\
\therefore \dfrac{{\sec A}}{{{\text{cose}}{{\text{c}}^2}A}} - \dfrac{{\operatorname{cosec} A}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A....................................................\left( 2 \right) \\
\]
From equation (1) and (2) we have
\[\left( {1 + \cot A + \tan A} \right)\left( {\sin A - \cos A} \right) = \dfrac{{\sec A}}{{\cos e{c^2}A}} - \dfrac{{\cos ecA}}{{{{\sec }^2}A}} = \sin A\tan A - \cot A\cos A\]
Hence proved.
Note: Here we have used the trigonometric ratio conversions such as \[\dfrac{1}{{\operatorname{cosec} A}} = \sin A\], \[\dfrac{{\sec A}}{{\operatorname{cosec} A}} = \dfrac{{\sin A}}{{\cos A}} = \tan A\], \[\dfrac{{\operatorname{cosec} A}}{{secA}} = \dfrac{{\cos A}}{{\sin A}} = \cot A\], \[\dfrac{1}{{\sec A}} = \cos A\]. While multiplying the terms inside the brackets make sure that you have written all the terms multiplied in it.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

