
Prove that in an ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ , the distance between the center and any normal doesn't exceed the difference between the semi axes of the ellipse.
$ d\le \ |a-b| $
Answer
564.6k+ views
Hint:The equation of the normal to the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ , at
a point $ ({{x}_{1}},{{y}_{1}}) $ on it, is given by: $ \dfrac{{{a}^{2}}x}{{{x}_{1}}}-
\dfrac{{{b}^{2}}y}{{{y}_{2}}}={{a}^{2}}-{{b}^{2}} $ .
The co-ordinates any point on the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ are
of the form $ \left( a\cos \theta ,\ b\sin \theta \right),\theta \in \left[ 0,2\pi \right] $ .
The center of the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is at $ (0,\ 0) $ .
Use the formula for the distance between a point and a line, and find its maxima/minima using derivatives.
Complete step by step solution:
Let's say that $ \left( a\cos \theta ,\ b\sin \theta \right),\theta \in \left[ 0,2\pi \right] $ is a point on the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ .
The equation of the normal through this point will be:
$ \dfrac{{{a}^{2}}x}{a\cos \theta }-\dfrac{{{b}^{2}}y}{b\sin \theta }={{a}^{2}}-{{b}^{2}} $
⇒ $ ax\sec \theta -by\csc \theta ={{a}^{2}}-{{b}^{2}} $
Comparing this with the general equation of a line $ Ax+By+C=0 $ , we have:
$ A=a\sec \theta ,\ B=-b\csc \theta ,\ C=-\left( {{a}^{2}}-{{b}^{2}} \right) $
The distance between the center $ (0,0) $ and the above line will be:
$ d=\left| \dfrac{A(0)+B(0)+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right| $
⇒ $ d=\left| \dfrac{-\left( {{a}^{2}}-{{b}^{2}} \right)}{\sqrt{{{(a\sec \theta )}^{2}}+{{(b\csc \theta )}^{2}}}}
\right| $
⇒ $ d=\left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\csc }^{2}}\theta }}
\right| $
Since a and b are constants, the above distance will be maximum/minimum when the denominator is minimum/maximum.
Differentiating the term $ {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\csc }^{2}}\theta $ w.r.t. $ \theta $ and equating to 0, we get:
$ {{a}^{2}}(2\sec \theta )(\sec \theta \tan \theta )+{{b}^{2}}(2\csc \theta )(-\csc \theta \cot \theta )=0 $
⇒ $ {{a}^{2}}{{\sec }^{2}}\theta \tan \theta -{{b}^{2}}{{\csc }^{2}}\theta \cot \theta =0 $
Writing $ \sec \theta =\dfrac{1}{\cos \theta } $ and $ \csc \theta =\dfrac{1}{\sin \theta } $ , we get:
⇒ $ \dfrac{{{a}^{2}}}{{{b}^{2}}}=\left( \dfrac{1}{{{\sin }^{2}}\theta }\cot \theta \right)\left( {{\cos
}^{2}}\theta \cot \theta \right) $
⇒ $ \dfrac{{{a}^{2}}}{{{b}^{2}}}={{\cot }^{4}}\theta $
⇒ $ \dfrac{a}{b}={{\cot }^{2}}\theta $
We can also see that the derivative of ${{a}^{2}}{{\sec }^{2}}\theta \tan \theta -{{b}^{2}}{{\csc
}^{2}}\theta \cot \theta $ is ${{a}^{2}}{{\sec }^{2}}x\left( 2{{\tan }^{2}}x+{{\sec }^{2}}x
\right)+{{b}^{2}}{{\csc }^{2}}x\left( {{\csc }^{2}}x+2{{b}^{2}}{{\cot }^{2}}x \right)$ which is always positive.
Therefore, the minimum value of the expression occurs at $\dfrac{a}{b}={{\cot }^{2}}\theta $ .
And the distance is $ d=\left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\csc
}^{2}}\theta }} \right| $
Using the identities $ 1+{{\tan }^{2}}\theta =se{{c}^{2}}\theta $ and $ 1+{{\cot }^{2}}\theta ={{\csc
}^{2}}\theta $ , we get.
⇒ $ d=\left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}\left( 1+{{\tan }^{2}}\theta \right)+{{b}^{2}}\left(
1+{{\cot }^{2}}\theta \right)}} \right| $
Substituting $ \dfrac{a}{b}={{\cot }^{2}}\theta $ and simplifying further, we get:
⇒ $ d\le \left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}\left( 1+\tfrac{b}{a} \right)+{{b}^{2}}\left(
1+\tfrac{a}{b} \right)}} \right| $
⇒ $ d\le \left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}+2ab+{{b}^{2}}}} \right| $
⇒ $ d\le \left| \dfrac{(a-b)(a+b)}{a+b} \right| $
⇒ $ d\le \left| a-b \right| $ , hence proved.
Note:The standard form, $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ , of an ellipse in Cartesian coordinates assumes that the origin is the center of the ellipse, the x-axis is the major axis, the foci are the points $ {{F}_{1}}=(c,\ 0),\ {{F}_{2}}=(-c,\ 0) $ and the vertices are $ {{V}_{1}}=(a,\ 0),\ {{V}_{2}}=(-a,\
0) $ .
The eccentricity of the ellipse is $ e=\dfrac{c}{a}=\sqrt{1-{{\left( \dfrac{b}{a} \right)}^{2}}} $ , for $ a>b $ . Tangent to an Ellipse: The equation of the tangent to the ellipse $
\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ , at a point $ ({{x}_{1}},{{y}_{1}}) $ , is given by:
$ \dfrac{x{{x}_{1}}}{{{a}^{2}}}+\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ .
If the line $ y=mx+c $ touches the ellipse, then $ {{c}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}} $ .
The distance between a point $ P({{x}_{1}},{{y}_{1}}) $ and the line $ ax+by+c=0 $ is given by:
$ Distance=\dfrac{|a{{x}_{1}}+b{{y}_{1}}+c|}{\sqrt{{{a}^{2}}+{{b}^{2}}}} $
a point $ ({{x}_{1}},{{y}_{1}}) $ on it, is given by: $ \dfrac{{{a}^{2}}x}{{{x}_{1}}}-
\dfrac{{{b}^{2}}y}{{{y}_{2}}}={{a}^{2}}-{{b}^{2}} $ .
The co-ordinates any point on the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ are
of the form $ \left( a\cos \theta ,\ b\sin \theta \right),\theta \in \left[ 0,2\pi \right] $ .
The center of the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is at $ (0,\ 0) $ .
Use the formula for the distance between a point and a line, and find its maxima/minima using derivatives.
Complete step by step solution:
Let's say that $ \left( a\cos \theta ,\ b\sin \theta \right),\theta \in \left[ 0,2\pi \right] $ is a point on the ellipse $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ .
The equation of the normal through this point will be:
$ \dfrac{{{a}^{2}}x}{a\cos \theta }-\dfrac{{{b}^{2}}y}{b\sin \theta }={{a}^{2}}-{{b}^{2}} $
⇒ $ ax\sec \theta -by\csc \theta ={{a}^{2}}-{{b}^{2}} $
Comparing this with the general equation of a line $ Ax+By+C=0 $ , we have:
$ A=a\sec \theta ,\ B=-b\csc \theta ,\ C=-\left( {{a}^{2}}-{{b}^{2}} \right) $
The distance between the center $ (0,0) $ and the above line will be:
$ d=\left| \dfrac{A(0)+B(0)+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right| $
⇒ $ d=\left| \dfrac{-\left( {{a}^{2}}-{{b}^{2}} \right)}{\sqrt{{{(a\sec \theta )}^{2}}+{{(b\csc \theta )}^{2}}}}
\right| $
⇒ $ d=\left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\csc }^{2}}\theta }}
\right| $
Since a and b are constants, the above distance will be maximum/minimum when the denominator is minimum/maximum.
Differentiating the term $ {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\csc }^{2}}\theta $ w.r.t. $ \theta $ and equating to 0, we get:
$ {{a}^{2}}(2\sec \theta )(\sec \theta \tan \theta )+{{b}^{2}}(2\csc \theta )(-\csc \theta \cot \theta )=0 $
⇒ $ {{a}^{2}}{{\sec }^{2}}\theta \tan \theta -{{b}^{2}}{{\csc }^{2}}\theta \cot \theta =0 $
Writing $ \sec \theta =\dfrac{1}{\cos \theta } $ and $ \csc \theta =\dfrac{1}{\sin \theta } $ , we get:
⇒ $ \dfrac{{{a}^{2}}}{{{b}^{2}}}=\left( \dfrac{1}{{{\sin }^{2}}\theta }\cot \theta \right)\left( {{\cos
}^{2}}\theta \cot \theta \right) $
⇒ $ \dfrac{{{a}^{2}}}{{{b}^{2}}}={{\cot }^{4}}\theta $
⇒ $ \dfrac{a}{b}={{\cot }^{2}}\theta $
We can also see that the derivative of ${{a}^{2}}{{\sec }^{2}}\theta \tan \theta -{{b}^{2}}{{\csc
}^{2}}\theta \cot \theta $ is ${{a}^{2}}{{\sec }^{2}}x\left( 2{{\tan }^{2}}x+{{\sec }^{2}}x
\right)+{{b}^{2}}{{\csc }^{2}}x\left( {{\csc }^{2}}x+2{{b}^{2}}{{\cot }^{2}}x \right)$ which is always positive.
Therefore, the minimum value of the expression occurs at $\dfrac{a}{b}={{\cot }^{2}}\theta $ .
And the distance is $ d=\left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\csc
}^{2}}\theta }} \right| $
Using the identities $ 1+{{\tan }^{2}}\theta =se{{c}^{2}}\theta $ and $ 1+{{\cot }^{2}}\theta ={{\csc
}^{2}}\theta $ , we get.
⇒ $ d=\left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}\left( 1+{{\tan }^{2}}\theta \right)+{{b}^{2}}\left(
1+{{\cot }^{2}}\theta \right)}} \right| $
Substituting $ \dfrac{a}{b}={{\cot }^{2}}\theta $ and simplifying further, we get:
⇒ $ d\le \left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}\left( 1+\tfrac{b}{a} \right)+{{b}^{2}}\left(
1+\tfrac{a}{b} \right)}} \right| $
⇒ $ d\le \left| \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}+2ab+{{b}^{2}}}} \right| $
⇒ $ d\le \left| \dfrac{(a-b)(a+b)}{a+b} \right| $
⇒ $ d\le \left| a-b \right| $ , hence proved.
Note:The standard form, $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ , of an ellipse in Cartesian coordinates assumes that the origin is the center of the ellipse, the x-axis is the major axis, the foci are the points $ {{F}_{1}}=(c,\ 0),\ {{F}_{2}}=(-c,\ 0) $ and the vertices are $ {{V}_{1}}=(a,\ 0),\ {{V}_{2}}=(-a,\
0) $ .
The eccentricity of the ellipse is $ e=\dfrac{c}{a}=\sqrt{1-{{\left( \dfrac{b}{a} \right)}^{2}}} $ , for $ a>b $ . Tangent to an Ellipse: The equation of the tangent to the ellipse $
\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ , at a point $ ({{x}_{1}},{{y}_{1}}) $ , is given by:
$ \dfrac{x{{x}_{1}}}{{{a}^{2}}}+\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ .
If the line $ y=mx+c $ touches the ellipse, then $ {{c}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}} $ .
The distance between a point $ P({{x}_{1}},{{y}_{1}}) $ and the line $ ax+by+c=0 $ is given by:
$ Distance=\dfrac{|a{{x}_{1}}+b{{y}_{1}}+c|}{\sqrt{{{a}^{2}}+{{b}^{2}}}} $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

