Prove that:
i) \[\begin{array}{c}
{\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}
\end{array}\] = $\dfrac{\pi }{6}$
Answer
Verified
451.5k+ views
Hint: Arc of any trigonometry functions represents its inverse function. The inverse function of a number gives the value of angle in radian then it can be changed into degree by multiplying the value of radian to $\dfrac{{180}}{\pi }$ . the formula for ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y$ is $\left( {xy + \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right)$ .
Complete step-by-step answer:
Given equation is,
\[\begin{array}{c}
{\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}
\end{array}\]
Evaluate further
\[\begin{array}{l}
= {\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - {{\left( {\sqrt {\dfrac{2}{3}} } \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}} \right)}^2}} } \right)\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - \dfrac{2}{3}} \sqrt {1 - \left( {\dfrac{{7 + 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{12 - 7 - 2\sqrt 6 }}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{5 - 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
Here, we can write \[5 - 2\sqrt 6 \] in the form of ${\left( {a - b} \right)^2}$
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \times \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{{2\sqrt 3 }}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{6}} \right)
\end{array}\]
We will take LCM of the above expression
\[\begin{array}{l}
\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 \sqrt 2 + \sqrt 2 + \sqrt 3 - \sqrt 2 }}{6}} \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{2\sqrt 3 + \sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)
\end{array}\]
\[ = \dfrac{\pi }{6}\]
Now LHS is equal to the RHS, hence proved
Note: In such types of questions, we take left hand side expression and solve the expression to get the right hand side expression. Apply formula and simplify the expression in order to get the right hand side expression. Use direct values of the inverse function to get the answer in the desired unit.
Complete step-by-step answer:
Given equation is,
\[\begin{array}{c}
{\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}
\end{array}\]
Evaluate further
\[\begin{array}{l}
= {\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - {{\left( {\sqrt {\dfrac{2}{3}} } \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}} \right)}^2}} } \right)\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - \dfrac{2}{3}} \sqrt {1 - \left( {\dfrac{{7 + 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{12 - 7 - 2\sqrt 6 }}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{5 - 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
Here, we can write \[5 - 2\sqrt 6 \] in the form of ${\left( {a - b} \right)^2}$
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \times \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{{2\sqrt 3 }}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{6}} \right)
\end{array}\]
We will take LCM of the above expression
\[\begin{array}{l}
\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 \sqrt 2 + \sqrt 2 + \sqrt 3 - \sqrt 2 }}{6}} \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{2\sqrt 3 + \sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)
\end{array}\]
\[ = \dfrac{\pi }{6}\]
Now LHS is equal to the RHS, hence proved
Note: In such types of questions, we take left hand side expression and solve the expression to get the right hand side expression. Apply formula and simplify the expression in order to get the right hand side expression. Use direct values of the inverse function to get the answer in the desired unit.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Chemistry: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE