Answer
Verified
413.4k+ views
Hint: Arc of any trigonometry functions represents its inverse function. The inverse function of a number gives the value of angle in radian then it can be changed into degree by multiplying the value of radian to $\dfrac{{180}}{\pi }$ . the formula for ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y$ is $\left( {xy + \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right)$ .
Complete step-by-step answer:
Given equation is,
\[\begin{array}{c}
{\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}
\end{array}\]
Evaluate further
\[\begin{array}{l}
= {\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - {{\left( {\sqrt {\dfrac{2}{3}} } \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}} \right)}^2}} } \right)\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - \dfrac{2}{3}} \sqrt {1 - \left( {\dfrac{{7 + 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{12 - 7 - 2\sqrt 6 }}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{5 - 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
Here, we can write \[5 - 2\sqrt 6 \] in the form of ${\left( {a - b} \right)^2}$
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \times \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{{2\sqrt 3 }}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{6}} \right)
\end{array}\]
We will take LCM of the above expression
\[\begin{array}{l}
\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 \sqrt 2 + \sqrt 2 + \sqrt 3 - \sqrt 2 }}{6}} \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{2\sqrt 3 + \sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)
\end{array}\]
\[ = \dfrac{\pi }{6}\]
Now LHS is equal to the RHS, hence proved
Note: In such types of questions, we take left hand side expression and solve the expression to get the right hand side expression. Apply formula and simplify the expression in order to get the right hand side expression. Use direct values of the inverse function to get the answer in the desired unit.
Complete step-by-step answer:
Given equation is,
\[\begin{array}{c}
{\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}
\end{array}\]
Evaluate further
\[\begin{array}{l}
= {\cos ^{ - 1}}\sqrt {\dfrac{2}{3}} - {\cos ^{ - 1}}\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - {{\left( {\sqrt {\dfrac{2}{3}} } \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }}} \right)}^2}} } \right)\\
= {\cos ^{ - 1}}\left( {\sqrt {\dfrac{2}{3}} \times \dfrac{{\sqrt 6 + 1}}{{2\sqrt 3 }} + \sqrt {1 - \dfrac{2}{3}} \sqrt {1 - \left( {\dfrac{{7 + 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{12 - 7 - 2\sqrt 6 }}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{5 - 2\sqrt 6 }}{{12}}} \right)} } \right)
\end{array}\]
Here, we can write \[5 - 2\sqrt 6 \] in the form of ${\left( {a - b} \right)^2}$
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \sqrt {\left( {\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{12}}} \right)} } \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \sqrt {\dfrac{1}{3}} \times \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{{2\sqrt 3 }}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 + 1}}{{3\sqrt 2 }} + \dfrac{{\left( {\sqrt 3 - \sqrt 2 } \right)}}{6}} \right)
\end{array}\]
We will take LCM of the above expression
\[\begin{array}{l}
\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 6 \sqrt 2 + \sqrt 2 + \sqrt 3 - \sqrt 2 }}{6}} \right)
\end{array}\]
\[\begin{array}{l}
= {\cos ^{ - 1}}\left( {\dfrac{{2\sqrt 3 + \sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{6}} \right)\\
= {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)
\end{array}\]
\[ = \dfrac{\pi }{6}\]
Now LHS is equal to the RHS, hence proved
Note: In such types of questions, we take left hand side expression and solve the expression to get the right hand side expression. Apply formula and simplify the expression in order to get the right hand side expression. Use direct values of the inverse function to get the answer in the desired unit.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers