
Prove that: $\dfrac{\tan \left( A+B \right)}{\cot \left( A-B \right)}=\dfrac{{{\tan }^{2}}A-{{\tan }^{2}}B}{1-{{\tan }^{2}}A{{\tan }^{2}}B}$.
Answer
610.2k+ views
Hint: We will be using the concept of trigonometric ratio to solve the problem. We will first take LHS of the equation and apply the trigonometric identity that \[\cot \theta =\dfrac{1}{\tan \theta }\], then we will apply the trigonometric identity that $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$, then we will use algebraic identity like $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$ to further simplify the problem.
Complete step-by-step answer:
Now, we have in LHS as,
$\dfrac{\tan \left( A+B \right)}{\cot \left( A-B \right)}$
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. Therefore, using this we have,
\[\begin{align}
& =\dfrac{\tan \left( A+B \right)}{\dfrac{1}{\tan \left( A-B \right)}} \\
& =\tan \left( A+B \right)\tan \left( A-B \right)............\left( 1 \right) \\
\end{align}\]
Now, we know the trigonometric identities that
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
Now, we will substitute these values in (1). So, we have,
$=\left( \dfrac{\tan A+\tan B}{1-\tan A\tan B} \right)\left( \dfrac{\tan A-\tan B}{1+\tan A\tan B} \right)$
Now, we will solve the numerator and denominator respectively. So, we have,
$=\dfrac{\left( \tan A+\tan B \right)\left( \tan A-\tan B \right)}{\left( 1-\tan A\tan B \right)\left( 1+\tan A\tan B \right)}$
Now, we will apply the trigonometric identity that,
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
So, we have now that,
$=\dfrac{{{\tan }^{2}}A-{{\tan }^{2}}B}{1-{{\tan }^{2}}A{{\tan }^{2}}B}$
Since, LHS = RHS. Hence, we have prove that,
$\dfrac{\tan \left( A+B \right)}{\cot \left( A-B \right)}=\dfrac{{{\tan }^{2}}A-{{\tan }^{2}}B}{1-{{\tan }^{2}}A{{\tan }^{2}}B}$
Note: To solve these types of questions it is important to note that we have first converted the whole LHS in terms of $\tan \theta $, then we expand tan (A + B) and tan (A – B) to get the same expression as that of the right hand side.
Complete step-by-step answer:
Now, we have in LHS as,
$\dfrac{\tan \left( A+B \right)}{\cot \left( A-B \right)}$
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. Therefore, using this we have,
\[\begin{align}
& =\dfrac{\tan \left( A+B \right)}{\dfrac{1}{\tan \left( A-B \right)}} \\
& =\tan \left( A+B \right)\tan \left( A-B \right)............\left( 1 \right) \\
\end{align}\]
Now, we know the trigonometric identities that
$\begin{align}
& \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
\end{align}$
Now, we will substitute these values in (1). So, we have,
$=\left( \dfrac{\tan A+\tan B}{1-\tan A\tan B} \right)\left( \dfrac{\tan A-\tan B}{1+\tan A\tan B} \right)$
Now, we will solve the numerator and denominator respectively. So, we have,
$=\dfrac{\left( \tan A+\tan B \right)\left( \tan A-\tan B \right)}{\left( 1-\tan A\tan B \right)\left( 1+\tan A\tan B \right)}$
Now, we will apply the trigonometric identity that,
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
So, we have now that,
$=\dfrac{{{\tan }^{2}}A-{{\tan }^{2}}B}{1-{{\tan }^{2}}A{{\tan }^{2}}B}$
Since, LHS = RHS. Hence, we have prove that,
$\dfrac{\tan \left( A+B \right)}{\cot \left( A-B \right)}=\dfrac{{{\tan }^{2}}A-{{\tan }^{2}}B}{1-{{\tan }^{2}}A{{\tan }^{2}}B}$
Note: To solve these types of questions it is important to note that we have first converted the whole LHS in terms of $\tan \theta $, then we expand tan (A + B) and tan (A – B) to get the same expression as that of the right hand side.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

