
Prove that \[\dfrac{{\tan ({{45}^ \circ } + A) - \tan ({{45}^ \circ } - A)}}{{\tan ({{45}^ \circ } + A) + \tan ({{45}^ \circ } - A)}} = \sin 2A\].
Answer
509.7k+ views
Hint: The question requires the application of trigonometric identities for \[{45^ \circ }\]angle. Trigonometric identities are equations that connect various trigonometric functions and hold for any value of the variable in the domain. An identity is a mathematical expression that holds true for all values of the variable(s) it contains.
Complete step-by-step answer:
In the given question, we have to use the following trigonometric identity:
\[\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\] and
\[\tan (x - y) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
Here we know that \[x = {45^ \circ }\]and \[y = A\]
Now substituting the value in the above formula, we get,
\[\tan ({45^ \circ } + A) = \dfrac{{\tan {{45}^ \circ } + \tan A}}{{1 - \tan {{45}^ \circ }\tan A}}\]
\[\tan ({45^ \circ } - A) = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}\]
Using trigonometric ratio table, we get \[\tan {45^ \circ } = 1\], and comparing with above formula, we get,
\[\tan ({45^ \circ } + A) = \dfrac{{(1 + \tan A)}}{{(1 - \tan A)}}\]
\[\tan ({45^ \circ } - A) = \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}\]
Substituting these values in left-hand side of the equation, we get,
\[ = \dfrac{{\dfrac{{(1 + \tan A)}}{{(1 - \tan A)}} - \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}}}{{\dfrac{{(1 + \tan A)}}{{(1 - \tan A)}} + \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}}}\]
Cross-multiplying the denominators, we get,
\[ = \dfrac{{\dfrac{{{{(1 + \tan A)}^2} - {{(1 - \tan A)}^2}}}{{(1 - \tan A)}}}}{{\dfrac{{{{(1 + \tan A)}^2} + {{(1 - \tan A)}^2}}}{{(1 - \tan A)}}}}\]
Dividing by \[(1 - \tan A)\], we get,
\[ = \dfrac{{{{(1 + \tan A)}^2} - {{(1 - \tan A)}^2}}}{{{{(1 + \tan A)}^2} + {{(1 - \tan A)}^2}}}\]
Now solving the brackets by factoring using following equation:
\[{(a + b)^2} = {a^2} + 2ab + {b^2}\]and
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
Comparing with the above formula, we get,
\[ = \dfrac{{(1 + 2\tan A + {{\tan }^2}A) - (1 - 2\tan A + {{\tan }^2}A)}}{{(1 + 2\tan A + {{\tan }^2}A) + (1 - 2\tan A + {{\tan }^2}A)}}\]
Opening the brackets, we get,
\[ = \dfrac{{1 + 2\tan A + {{\tan }^2}A - 1 + 2\tan A - {{\tan }^2}A}}{{1 + 2\tan A + {{\tan }^2}A + 1 - 2\tan A + {{\tan }^2}A}}\]
Adding and subtracting the variables, we get,
\[ = \dfrac{{4\tan A}}{{2 + 2{{\tan }^2}A}}\]
Dividing by \[2\], we get,
\[ = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Now we will use the following trigonometric identities to solve the question:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and
\[1 + {\tan ^2}\theta = {\sec ^2}\theta \]and
\[{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}\]
Comparing with above formula and substituting the value, we get,
\[ = \dfrac{{2\dfrac{{\sin A}}{{\cos A}}}}{{{{\sec }^2}A}}\]
\[ = \dfrac{{2\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}}\]
\[ = 2\dfrac{{\sin A}}{{\cos A}} \times {\cos ^2}A\]
\[ = 2\sin A \times \cos A\]
Now according to formula:
\[2\sin \theta \cos \theta = \sin 2\theta \]
Comparing with above formula, we get,
\[ = \sin 2A\]
Hence LHS=RHS. Therefore, it is proved as per above solution that
\[\dfrac{{tan({{45}^ \circ } + A) - tan({{45}^ \circ } - A)}}{{tan({{45}^ \circ } + A) + tan({{45}^ \circ } - A)}} = \sin 2A\]
Note: Meaning of tangent and sine is given below for better understanding:
Tangent: The ratio of side opposite to given angle and its adjacent side is called tangent. It is denoted as \[\tan \theta \].
\[\tan \theta = \dfrac{{Opposite{\text{ }}side\,to\,given\,angle}}{{{\rm A}djacent{\text{ }}side\,to\,given\,angle}}\]
Sine: The ratio of side opposite to given angle and hypotenuse is called sine. It is denoted as \[\sin \theta \].
\[\sin \theta = \dfrac{{Opposite{\text{ }}side\,to\,given\,angle}}{{Hypotenuse}}\]
Complete step-by-step answer:
In the given question, we have to use the following trigonometric identity:
\[\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\] and
\[\tan (x - y) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}\]
Here we know that \[x = {45^ \circ }\]and \[y = A\]
Now substituting the value in the above formula, we get,
\[\tan ({45^ \circ } + A) = \dfrac{{\tan {{45}^ \circ } + \tan A}}{{1 - \tan {{45}^ \circ }\tan A}}\]
\[\tan ({45^ \circ } - A) = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}\]
Using trigonometric ratio table, we get \[\tan {45^ \circ } = 1\], and comparing with above formula, we get,
\[\tan ({45^ \circ } + A) = \dfrac{{(1 + \tan A)}}{{(1 - \tan A)}}\]
\[\tan ({45^ \circ } - A) = \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}\]
Substituting these values in left-hand side of the equation, we get,
\[ = \dfrac{{\dfrac{{(1 + \tan A)}}{{(1 - \tan A)}} - \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}}}{{\dfrac{{(1 + \tan A)}}{{(1 - \tan A)}} + \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}}}\]
Cross-multiplying the denominators, we get,
\[ = \dfrac{{\dfrac{{{{(1 + \tan A)}^2} - {{(1 - \tan A)}^2}}}{{(1 - \tan A)}}}}{{\dfrac{{{{(1 + \tan A)}^2} + {{(1 - \tan A)}^2}}}{{(1 - \tan A)}}}}\]
Dividing by \[(1 - \tan A)\], we get,
\[ = \dfrac{{{{(1 + \tan A)}^2} - {{(1 - \tan A)}^2}}}{{{{(1 + \tan A)}^2} + {{(1 - \tan A)}^2}}}\]
Now solving the brackets by factoring using following equation:
\[{(a + b)^2} = {a^2} + 2ab + {b^2}\]and
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
Comparing with the above formula, we get,
\[ = \dfrac{{(1 + 2\tan A + {{\tan }^2}A) - (1 - 2\tan A + {{\tan }^2}A)}}{{(1 + 2\tan A + {{\tan }^2}A) + (1 - 2\tan A + {{\tan }^2}A)}}\]
Opening the brackets, we get,
\[ = \dfrac{{1 + 2\tan A + {{\tan }^2}A - 1 + 2\tan A - {{\tan }^2}A}}{{1 + 2\tan A + {{\tan }^2}A + 1 - 2\tan A + {{\tan }^2}A}}\]
Adding and subtracting the variables, we get,
\[ = \dfrac{{4\tan A}}{{2 + 2{{\tan }^2}A}}\]
Dividing by \[2\], we get,
\[ = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Now we will use the following trigonometric identities to solve the question:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and
\[1 + {\tan ^2}\theta = {\sec ^2}\theta \]and
\[{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}\]
Comparing with above formula and substituting the value, we get,
\[ = \dfrac{{2\dfrac{{\sin A}}{{\cos A}}}}{{{{\sec }^2}A}}\]
\[ = \dfrac{{2\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}}\]
\[ = 2\dfrac{{\sin A}}{{\cos A}} \times {\cos ^2}A\]
\[ = 2\sin A \times \cos A\]
Now according to formula:
\[2\sin \theta \cos \theta = \sin 2\theta \]
Comparing with above formula, we get,
\[ = \sin 2A\]
Hence LHS=RHS. Therefore, it is proved as per above solution that
\[\dfrac{{tan({{45}^ \circ } + A) - tan({{45}^ \circ } - A)}}{{tan({{45}^ \circ } + A) + tan({{45}^ \circ } - A)}} = \sin 2A\]
Note: Meaning of tangent and sine is given below for better understanding:
Tangent: The ratio of side opposite to given angle and its adjacent side is called tangent. It is denoted as \[\tan \theta \].
\[\tan \theta = \dfrac{{Opposite{\text{ }}side\,to\,given\,angle}}{{{\rm A}djacent{\text{ }}side\,to\,given\,angle}}\]
Sine: The ratio of side opposite to given angle and hypotenuse is called sine. It is denoted as \[\sin \theta \].
\[\sin \theta = \dfrac{{Opposite{\text{ }}side\,to\,given\,angle}}{{Hypotenuse}}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

