
Prove that:
$\dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x}=\dfrac{1}{2}\left[ \tan 27x-\tan x \right]$
Answer
500.7k+ views
Hint: First of all, multiply and divide the L.H.S of the above equation to 2. And the multiply and divide $\cos x$ with $\dfrac{\sin x}{\cos 3x}$, $\cos 3x$ with $\dfrac{\sin 3x}{\cos 9x}$ and $\cos 9x$ with $\dfrac{\sin 9x}{\cos 27x}$. Then we are going to use the trigonometric property which states that $\sin 2x=2\sin x\cos x$. Also, we need this trigonometric identity which states that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$.
Complete step-by-step solution:
The equation we are asked to prove is as follows:
$\dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x}=\dfrac{1}{2}\left[ \tan 27x-\tan x \right]$
We are going to rearrange the L.H.S of the above equation in such a way so that it will be equal to R.H.S. For that, we are going to multiply and divide 2 to L.H.S of the above equation and we get,
$\dfrac{2}{2}\left( \dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x} \right)$
Now, moving the 2 written in the numerator inside the bracket we get,
$\dfrac{1}{2}\left( \dfrac{2\sin x}{\cos 3x}+\dfrac{2\sin 3x}{\cos 9x}+\dfrac{2\sin 9x}{\cos 27x} \right)$
Now, multiplying and dividing $\cos x$ with $\dfrac{\sin x}{\cos 3x}$, $\cos 3x$ with $\dfrac{\sin 3x}{\cos 9x}$ and $\cos 9x$ with $\dfrac{\sin 9x}{\cos 27x}$ in the above expression and we get,
$\dfrac{1}{2}\left( \dfrac{2\sin x\cos x}{\cos 3x\cos x}+\dfrac{2\sin 3x\cos 3x}{\cos 9x\cos 3x}+\dfrac{2\sin 9x\cos 9x}{\cos 27x\cos 9x} \right)$
We know the trigonometry double angle property which states that:
$\sin 2x=2\sin x\cos x$
Using the above relation in the above expression we get,
$\dfrac{1}{2}\left( \dfrac{\sin 2x}{\cos 3x\cos x}+\dfrac{\sin 6x}{\cos 9x\cos 3x}+\dfrac{\sin 18x}{\cos 27x\cos 9x} \right)$
We are also going to use the sine identity which states that:
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Writing $\sin 2x=\sin \left( 3x-x \right),\sin 6x=\sin \left( 9x-3x \right),\sin 18x=\sin \left( 27x-9x \right)$ in the above expression we get,
$\begin{align}
& \dfrac{1}{2}\left( \dfrac{\sin \left( 3x-x \right)}{\cos 3x\cos x}+\dfrac{\sin \left( 9x-3x \right)}{\cos 9x\cos 3x}+\dfrac{\sin \left( 27x-9x \right)}{\cos 27x\cos 9x} \right) \\
& =\dfrac{1}{2}\left( \dfrac{\sin 3x\cos x-\cos 3x\sin x}{\cos 3x\cos x}+\dfrac{\sin 9x\cos 3x-\cos 9x\sin 3x}{\cos 9x\cos 3x}+\dfrac{\sin 27x\cos 9x-\cos 27x\sin 9x}{\cos 27x\cos 9x} \right) \\
\end{align}$
Rearranging the above expression and we get,
$=\dfrac{1}{2}\left( \tan 3x-\tan x+\tan 9x-\tan 3x+\tan 27x-\tan 9x \right)$
Terms with opposite sign get canceled out and we get,
$=\dfrac{1}{2}\left( \tan 27x-\tan x \right)$
As you can see that our L.H.S is coming equal to R.H.S so we have proved the given equation.
Note: To solve the above problem, we must know the following trigonometric identities:
$\sin 2x=2\sin x\cos x$
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
You cannot move forward in the above problem if you don’t know the above properties so make sure you have properly understood these concepts.
Complete step-by-step solution:
The equation we are asked to prove is as follows:
$\dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x}=\dfrac{1}{2}\left[ \tan 27x-\tan x \right]$
We are going to rearrange the L.H.S of the above equation in such a way so that it will be equal to R.H.S. For that, we are going to multiply and divide 2 to L.H.S of the above equation and we get,
$\dfrac{2}{2}\left( \dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x} \right)$
Now, moving the 2 written in the numerator inside the bracket we get,
$\dfrac{1}{2}\left( \dfrac{2\sin x}{\cos 3x}+\dfrac{2\sin 3x}{\cos 9x}+\dfrac{2\sin 9x}{\cos 27x} \right)$
Now, multiplying and dividing $\cos x$ with $\dfrac{\sin x}{\cos 3x}$, $\cos 3x$ with $\dfrac{\sin 3x}{\cos 9x}$ and $\cos 9x$ with $\dfrac{\sin 9x}{\cos 27x}$ in the above expression and we get,
$\dfrac{1}{2}\left( \dfrac{2\sin x\cos x}{\cos 3x\cos x}+\dfrac{2\sin 3x\cos 3x}{\cos 9x\cos 3x}+\dfrac{2\sin 9x\cos 9x}{\cos 27x\cos 9x} \right)$
We know the trigonometry double angle property which states that:
$\sin 2x=2\sin x\cos x$
Using the above relation in the above expression we get,
$\dfrac{1}{2}\left( \dfrac{\sin 2x}{\cos 3x\cos x}+\dfrac{\sin 6x}{\cos 9x\cos 3x}+\dfrac{\sin 18x}{\cos 27x\cos 9x} \right)$
We are also going to use the sine identity which states that:
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Writing $\sin 2x=\sin \left( 3x-x \right),\sin 6x=\sin \left( 9x-3x \right),\sin 18x=\sin \left( 27x-9x \right)$ in the above expression we get,
$\begin{align}
& \dfrac{1}{2}\left( \dfrac{\sin \left( 3x-x \right)}{\cos 3x\cos x}+\dfrac{\sin \left( 9x-3x \right)}{\cos 9x\cos 3x}+\dfrac{\sin \left( 27x-9x \right)}{\cos 27x\cos 9x} \right) \\
& =\dfrac{1}{2}\left( \dfrac{\sin 3x\cos x-\cos 3x\sin x}{\cos 3x\cos x}+\dfrac{\sin 9x\cos 3x-\cos 9x\sin 3x}{\cos 9x\cos 3x}+\dfrac{\sin 27x\cos 9x-\cos 27x\sin 9x}{\cos 27x\cos 9x} \right) \\
\end{align}$
Rearranging the above expression and we get,
$=\dfrac{1}{2}\left( \tan 3x-\tan x+\tan 9x-\tan 3x+\tan 27x-\tan 9x \right)$
Terms with opposite sign get canceled out and we get,
$=\dfrac{1}{2}\left( \tan 27x-\tan x \right)$
As you can see that our L.H.S is coming equal to R.H.S so we have proved the given equation.
Note: To solve the above problem, we must know the following trigonometric identities:
$\sin 2x=2\sin x\cos x$
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
You cannot move forward in the above problem if you don’t know the above properties so make sure you have properly understood these concepts.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

