
Prove that:
$\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$
Answer
575.7k+ views
Hint: For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
$\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression.
Complete step-by-step answer:
Given data: $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$
Taking the numerator of the expression in the left-hand side
$ \Rightarrow \sin x - \sin 3x + \sin 5x - \sin 7x$
On rearranging we get,
\[ \Rightarrow \;\left[ {\sin x - \sin 3x} \right]{\text{ }} + {\text{ }}\left[ {\sin 5x - \sin 7x} \right]\]
Using the formula $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
\[ \Rightarrow 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\cos \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\cos \left( {\dfrac{{5x + 7x}}{2}} \right)\]
On simplification, we get
\[ \Rightarrow 2\sin \left( { - x} \right)\cos \left( {2x} \right) + 2\sin \left( { - x} \right)\cos \left( {6x} \right)\]
Taking \[-sinx\] common from both the terms
\[ \Rightarrow - 2\sin x\left( {\cos 2x + \cos 6x} \right)\]
Using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow - 2\sin x\left( {2\cos \left( {\dfrac{{2x + 6x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow - 4\sin x\cos 4x\cos 2x\]
Now, Taking the denominator of the expression in the left-hand side
$ \Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x)$
Using the formula$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$ \Rightarrow - 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\sin \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\sin \left( {\dfrac{{5x + 7x}}{2}} \right)$
On simplification we get,
\[ \Rightarrow - 2\sin \left( { - x} \right)\sin \left( {2x} \right) + 2\sin \left( { - x} \right)\sin \left( {6x} \right)\]
Using \[\sin ( - x) = - \sin x\], we get
\[ \Rightarrow 2\sin \left( x \right)\sin \left( {2x} \right) - 2\sin \left( x \right)\sin \left( {6x} \right)\]
Taking $2\sin x$ common from both the terms, we get
\[ \Rightarrow 2\sin x\left( {\sin 2x - \sin 6x} \right)\]
Now using $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$, we get
\[ \Rightarrow 2\sin x\left( {2\sin \left( {\dfrac{{2x - 6x}}{2}} \right)\cos \left( {\dfrac{{2x + 6x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow 2\sin x\left( { - 2\sin 2x\cos 4x} \right)\]
\[ \Rightarrow - 4\sin x\sin 2x\cos 4x\]
Therefore the left-hand expression will be $\dfrac{{numerator}}{{deno\min ator}}$
i.e. $\dfrac{{ - 4\sin x\cos 4x\cos 2x}}{{ - 4\sin x\sin 2x\cos 4x}}$
Dividing $ - 4\sin x\cos 4x$ from the numerator and the denominator, we get
$ = \dfrac{{\cos 2x}}{{\sin 2x}}$
Using $\dfrac{{\cos A}}{{\sin A}} = \cot A$, we get
$ = \cot 2x$, which equal to the right-hand side expression
Since the left-hand side and right=hand side are equal, the equation has been proved.
Note: We also prove that $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$, by substituting the value of $\dfrac{\pi }{6}$
Substituting $x = \dfrac{\pi }{6}$
Left-hand side$ = \dfrac{{\sin \left( {\dfrac{\pi }{6}} \right) - \sin \left( {3\dfrac{\pi }{6}} \right) + \sin \left( {5\dfrac{\pi }{6}} \right) - \sin \left( {7\dfrac{\pi }{6}} \right)}}{{\cos \left( {\dfrac{\pi }{6}} \right) - \cos \left( {3\dfrac{\pi }{6}} \right) - \cos \left( {5\dfrac{\pi }{6}} \right) + \cos \left( {7\dfrac{\pi }{6}} \right)}}$
\[ = \dfrac{{\dfrac{1}{2} - 0 + \dfrac{1}{2} - \left( { - \dfrac{1}{2}} \right)}}{{\dfrac{{\sqrt 3 }}{2} - 0 - \left( { - \dfrac{{\sqrt 3 }}{2}} \right) - \dfrac{{\sqrt 3 }}{2}}}\]
On simplifying
\[ = \dfrac{1}{{\sqrt 3 }}\]
Right-hand side$ = \cot 2\left( {\dfrac{\pi }{6}} \right)$
$ = \dfrac{1}{{\sqrt 3 }}$ , $\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}$
Since, Left-hand side\[ = \]Right-hand side
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verify.
$\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression.
Complete step-by-step answer:
Given data: $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$
Taking the numerator of the expression in the left-hand side
$ \Rightarrow \sin x - \sin 3x + \sin 5x - \sin 7x$
On rearranging we get,
\[ \Rightarrow \;\left[ {\sin x - \sin 3x} \right]{\text{ }} + {\text{ }}\left[ {\sin 5x - \sin 7x} \right]\]
Using the formula $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
\[ \Rightarrow 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\cos \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\cos \left( {\dfrac{{5x + 7x}}{2}} \right)\]
On simplification, we get
\[ \Rightarrow 2\sin \left( { - x} \right)\cos \left( {2x} \right) + 2\sin \left( { - x} \right)\cos \left( {6x} \right)\]
Taking \[-sinx\] common from both the terms
\[ \Rightarrow - 2\sin x\left( {\cos 2x + \cos 6x} \right)\]
Using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow - 2\sin x\left( {2\cos \left( {\dfrac{{2x + 6x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow - 4\sin x\cos 4x\cos 2x\]
Now, Taking the denominator of the expression in the left-hand side
$ \Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x)$
Using the formula$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$ \Rightarrow - 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\sin \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\sin \left( {\dfrac{{5x + 7x}}{2}} \right)$
On simplification we get,
\[ \Rightarrow - 2\sin \left( { - x} \right)\sin \left( {2x} \right) + 2\sin \left( { - x} \right)\sin \left( {6x} \right)\]
Using \[\sin ( - x) = - \sin x\], we get
\[ \Rightarrow 2\sin \left( x \right)\sin \left( {2x} \right) - 2\sin \left( x \right)\sin \left( {6x} \right)\]
Taking $2\sin x$ common from both the terms, we get
\[ \Rightarrow 2\sin x\left( {\sin 2x - \sin 6x} \right)\]
Now using $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$, we get
\[ \Rightarrow 2\sin x\left( {2\sin \left( {\dfrac{{2x - 6x}}{2}} \right)\cos \left( {\dfrac{{2x + 6x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow 2\sin x\left( { - 2\sin 2x\cos 4x} \right)\]
\[ \Rightarrow - 4\sin x\sin 2x\cos 4x\]
Therefore the left-hand expression will be $\dfrac{{numerator}}{{deno\min ator}}$
i.e. $\dfrac{{ - 4\sin x\cos 4x\cos 2x}}{{ - 4\sin x\sin 2x\cos 4x}}$
Dividing $ - 4\sin x\cos 4x$ from the numerator and the denominator, we get
$ = \dfrac{{\cos 2x}}{{\sin 2x}}$
Using $\dfrac{{\cos A}}{{\sin A}} = \cot A$, we get
$ = \cot 2x$, which equal to the right-hand side expression
Since the left-hand side and right=hand side are equal, the equation has been proved.
Note: We also prove that $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$, by substituting the value of $\dfrac{\pi }{6}$
Substituting $x = \dfrac{\pi }{6}$
Left-hand side$ = \dfrac{{\sin \left( {\dfrac{\pi }{6}} \right) - \sin \left( {3\dfrac{\pi }{6}} \right) + \sin \left( {5\dfrac{\pi }{6}} \right) - \sin \left( {7\dfrac{\pi }{6}} \right)}}{{\cos \left( {\dfrac{\pi }{6}} \right) - \cos \left( {3\dfrac{\pi }{6}} \right) - \cos \left( {5\dfrac{\pi }{6}} \right) + \cos \left( {7\dfrac{\pi }{6}} \right)}}$
\[ = \dfrac{{\dfrac{1}{2} - 0 + \dfrac{1}{2} - \left( { - \dfrac{1}{2}} \right)}}{{\dfrac{{\sqrt 3 }}{2} - 0 - \left( { - \dfrac{{\sqrt 3 }}{2}} \right) - \dfrac{{\sqrt 3 }}{2}}}\]
On simplifying
\[ = \dfrac{1}{{\sqrt 3 }}\]
Right-hand side$ = \cot 2\left( {\dfrac{\pi }{6}} \right)$
$ = \dfrac{1}{{\sqrt 3 }}$ , $\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}$
Since, Left-hand side\[ = \]Right-hand side
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verify.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

