
Prove that:
$\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$
Answer
509.1k+ views
Hint: For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
$\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression.
Complete step-by-step answer:
Given data: $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$
Taking the numerator of the expression in the left-hand side
$ \Rightarrow \sin x - \sin 3x + \sin 5x - \sin 7x$
On rearranging we get,
\[ \Rightarrow \;\left[ {\sin x - \sin 3x} \right]{\text{ }} + {\text{ }}\left[ {\sin 5x - \sin 7x} \right]\]
Using the formula $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
\[ \Rightarrow 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\cos \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\cos \left( {\dfrac{{5x + 7x}}{2}} \right)\]
On simplification, we get
\[ \Rightarrow 2\sin \left( { - x} \right)\cos \left( {2x} \right) + 2\sin \left( { - x} \right)\cos \left( {6x} \right)\]
Taking \[-sinx\] common from both the terms
\[ \Rightarrow - 2\sin x\left( {\cos 2x + \cos 6x} \right)\]
Using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow - 2\sin x\left( {2\cos \left( {\dfrac{{2x + 6x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow - 4\sin x\cos 4x\cos 2x\]
Now, Taking the denominator of the expression in the left-hand side
$ \Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x)$
Using the formula$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$ \Rightarrow - 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\sin \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\sin \left( {\dfrac{{5x + 7x}}{2}} \right)$
On simplification we get,
\[ \Rightarrow - 2\sin \left( { - x} \right)\sin \left( {2x} \right) + 2\sin \left( { - x} \right)\sin \left( {6x} \right)\]
Using \[\sin ( - x) = - \sin x\], we get
\[ \Rightarrow 2\sin \left( x \right)\sin \left( {2x} \right) - 2\sin \left( x \right)\sin \left( {6x} \right)\]
Taking $2\sin x$ common from both the terms, we get
\[ \Rightarrow 2\sin x\left( {\sin 2x - \sin 6x} \right)\]
Now using $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$, we get
\[ \Rightarrow 2\sin x\left( {2\sin \left( {\dfrac{{2x - 6x}}{2}} \right)\cos \left( {\dfrac{{2x + 6x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow 2\sin x\left( { - 2\sin 2x\cos 4x} \right)\]
\[ \Rightarrow - 4\sin x\sin 2x\cos 4x\]
Therefore the left-hand expression will be $\dfrac{{numerator}}{{deno\min ator}}$
i.e. $\dfrac{{ - 4\sin x\cos 4x\cos 2x}}{{ - 4\sin x\sin 2x\cos 4x}}$
Dividing $ - 4\sin x\cos 4x$ from the numerator and the denominator, we get
$ = \dfrac{{\cos 2x}}{{\sin 2x}}$
Using $\dfrac{{\cos A}}{{\sin A}} = \cot A$, we get
$ = \cot 2x$, which equal to the right-hand side expression
Since the left-hand side and right=hand side are equal, the equation has been proved.
Note: We also prove that $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$, by substituting the value of $\dfrac{\pi }{6}$
Substituting $x = \dfrac{\pi }{6}$
Left-hand side$ = \dfrac{{\sin \left( {\dfrac{\pi }{6}} \right) - \sin \left( {3\dfrac{\pi }{6}} \right) + \sin \left( {5\dfrac{\pi }{6}} \right) - \sin \left( {7\dfrac{\pi }{6}} \right)}}{{\cos \left( {\dfrac{\pi }{6}} \right) - \cos \left( {3\dfrac{\pi }{6}} \right) - \cos \left( {5\dfrac{\pi }{6}} \right) + \cos \left( {7\dfrac{\pi }{6}} \right)}}$
\[ = \dfrac{{\dfrac{1}{2} - 0 + \dfrac{1}{2} - \left( { - \dfrac{1}{2}} \right)}}{{\dfrac{{\sqrt 3 }}{2} - 0 - \left( { - \dfrac{{\sqrt 3 }}{2}} \right) - \dfrac{{\sqrt 3 }}{2}}}\]
On simplifying
\[ = \dfrac{1}{{\sqrt 3 }}\]
Right-hand side$ = \cot 2\left( {\dfrac{\pi }{6}} \right)$
$ = \dfrac{1}{{\sqrt 3 }}$ , $\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}$
Since, Left-hand side\[ = \]Right-hand side
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verify.
$\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression.
Complete step-by-step answer:
Given data: $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$
Taking the numerator of the expression in the left-hand side
$ \Rightarrow \sin x - \sin 3x + \sin 5x - \sin 7x$
On rearranging we get,
\[ \Rightarrow \;\left[ {\sin x - \sin 3x} \right]{\text{ }} + {\text{ }}\left[ {\sin 5x - \sin 7x} \right]\]
Using the formula $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$
\[ \Rightarrow 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\cos \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\cos \left( {\dfrac{{5x + 7x}}{2}} \right)\]
On simplification, we get
\[ \Rightarrow 2\sin \left( { - x} \right)\cos \left( {2x} \right) + 2\sin \left( { - x} \right)\cos \left( {6x} \right)\]
Taking \[-sinx\] common from both the terms
\[ \Rightarrow - 2\sin x\left( {\cos 2x + \cos 6x} \right)\]
Using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow - 2\sin x\left( {2\cos \left( {\dfrac{{2x + 6x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow - 4\sin x\cos 4x\cos 2x\]
Now, Taking the denominator of the expression in the left-hand side
$ \Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x)$
Using the formula$\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
$ \Rightarrow - 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\sin \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\sin \left( {\dfrac{{5x + 7x}}{2}} \right)$
On simplification we get,
\[ \Rightarrow - 2\sin \left( { - x} \right)\sin \left( {2x} \right) + 2\sin \left( { - x} \right)\sin \left( {6x} \right)\]
Using \[\sin ( - x) = - \sin x\], we get
\[ \Rightarrow 2\sin \left( x \right)\sin \left( {2x} \right) - 2\sin \left( x \right)\sin \left( {6x} \right)\]
Taking $2\sin x$ common from both the terms, we get
\[ \Rightarrow 2\sin x\left( {\sin 2x - \sin 6x} \right)\]
Now using $\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)$, we get
\[ \Rightarrow 2\sin x\left( {2\sin \left( {\dfrac{{2x - 6x}}{2}} \right)\cos \left( {\dfrac{{2x + 6x}}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow 2\sin x\left( { - 2\sin 2x\cos 4x} \right)\]
\[ \Rightarrow - 4\sin x\sin 2x\cos 4x\]
Therefore the left-hand expression will be $\dfrac{{numerator}}{{deno\min ator}}$
i.e. $\dfrac{{ - 4\sin x\cos 4x\cos 2x}}{{ - 4\sin x\sin 2x\cos 4x}}$
Dividing $ - 4\sin x\cos 4x$ from the numerator and the denominator, we get
$ = \dfrac{{\cos 2x}}{{\sin 2x}}$
Using $\dfrac{{\cos A}}{{\sin A}} = \cot A$, we get
$ = \cot 2x$, which equal to the right-hand side expression
Since the left-hand side and right=hand side are equal, the equation has been proved.
Note: We also prove that $\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x$, by substituting the value of $\dfrac{\pi }{6}$
Substituting $x = \dfrac{\pi }{6}$
Left-hand side$ = \dfrac{{\sin \left( {\dfrac{\pi }{6}} \right) - \sin \left( {3\dfrac{\pi }{6}} \right) + \sin \left( {5\dfrac{\pi }{6}} \right) - \sin \left( {7\dfrac{\pi }{6}} \right)}}{{\cos \left( {\dfrac{\pi }{6}} \right) - \cos \left( {3\dfrac{\pi }{6}} \right) - \cos \left( {5\dfrac{\pi }{6}} \right) + \cos \left( {7\dfrac{\pi }{6}} \right)}}$
\[ = \dfrac{{\dfrac{1}{2} - 0 + \dfrac{1}{2} - \left( { - \dfrac{1}{2}} \right)}}{{\dfrac{{\sqrt 3 }}{2} - 0 - \left( { - \dfrac{{\sqrt 3 }}{2}} \right) - \dfrac{{\sqrt 3 }}{2}}}\]
On simplifying
\[ = \dfrac{1}{{\sqrt 3 }}\]
Right-hand side$ = \cot 2\left( {\dfrac{\pi }{6}} \right)$
$ = \dfrac{1}{{\sqrt 3 }}$ , $\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}$
Since, Left-hand side\[ = \]Right-hand side
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verify.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
