
Prove that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\] using the identity \[{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .\]
Answer
552.9k+ views
Hint: We are given \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\] and we have to solve so that it becomes \[\dfrac{1}{\sec \theta -\tan \theta }.\] We will first start with the left-hand side then we will divide the numerator and denominator by \[\cos \theta .\] And then we will have the equation in terms of \[\sec \theta \] and \[\tan \theta .\] Once we have that we use \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] to solve further we take the common term outside from the denominator. Once we simplify and cancel the common terms in the numerator and denominator, we will get our desired solution.
Complete step by step answer:
We are given that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\] we have to show that this is the same as \[\dfrac{1}{\sec \theta -\tan \theta }.\] This means we have to show that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\] by using the identity \[{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .\] To solve we should learn certain things. Firstly, \[\tan \theta \] is defined as \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\] And \[\sec \theta \] is required for \[\cos \theta .\]
\[\Rightarrow \sec \theta =\dfrac{1}{\cos \theta }\]
And also that since \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so we get, \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\]
Now, to solve the given problem, we will start by considering the left-hand side. So, we have
\[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\]
Now, we divide the numerator and denominator by \[\cos \theta \] so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta -\cos \theta +1}{\cos \theta }}{\dfrac{\sin \theta +\cos \theta -1}{\cos \theta }}\]
On simplifying, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta }{\cos \theta }-\dfrac{\cos \theta }{\cos \theta }+\dfrac{1}{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\cos \theta }-\dfrac{1}{\cos \theta }}\]
Now, as \[\dfrac{1}{\cos \theta }=\sec \theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta ,\dfrac{\cos \theta }{\cos \theta }=1.\] So, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta -1+\sec \theta }{\tan \theta +1-\sec \theta }\]
So,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +1 \right)}\]
Now as \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\] Using this in the denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right) \right)}\]
Now as \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right),\] so,
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)\]
So using this above, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left[ \left( \tan \theta -\sec \theta \right)+\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right) \right]}\]
We take \[\sec \theta -\tan \theta \] common from the denominator, so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ -1+\tan \theta +\sec \theta \right]}\]
Rearranging the terms, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ \tan \theta +\sec \theta -1 \right]}\]
Cancelling the like terms in the numerator and denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\]
Hence proved.
Note:
Students need to remember that \[\tan \theta -\sec \theta \] can be written in terms of \[\sec \theta -\tan \theta .\] We take \[\tan \theta -\sec \theta \] and from this we take – 1 common, so we get,
\[\tan \theta -\sec \theta =-1\left( -\tan \theta +\sec \theta \right)\]
Rearranging the terms, we will get,
\[\Rightarrow \tan \theta -\sec \theta =-1\left( \sec \theta -\tan \theta \right)\]
So, we get,
\[\Rightarrow \tan \theta -\sec \theta =-\left( \sec \theta -\tan \theta \right)\]
We need to be very careful while simplifying or if we get missed in the initial state, it could lead to the wrong solution.
Complete step by step answer:
We are given that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\] we have to show that this is the same as \[\dfrac{1}{\sec \theta -\tan \theta }.\] This means we have to show that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\] by using the identity \[{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .\] To solve we should learn certain things. Firstly, \[\tan \theta \] is defined as \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\] And \[\sec \theta \] is required for \[\cos \theta .\]
\[\Rightarrow \sec \theta =\dfrac{1}{\cos \theta }\]
And also that since \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so we get, \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\]
Now, to solve the given problem, we will start by considering the left-hand side. So, we have
\[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\]
Now, we divide the numerator and denominator by \[\cos \theta \] so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta -\cos \theta +1}{\cos \theta }}{\dfrac{\sin \theta +\cos \theta -1}{\cos \theta }}\]
On simplifying, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta }{\cos \theta }-\dfrac{\cos \theta }{\cos \theta }+\dfrac{1}{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\cos \theta }-\dfrac{1}{\cos \theta }}\]
Now, as \[\dfrac{1}{\cos \theta }=\sec \theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta ,\dfrac{\cos \theta }{\cos \theta }=1.\] So, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta -1+\sec \theta }{\tan \theta +1-\sec \theta }\]
So,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +1 \right)}\]
Now as \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\] Using this in the denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right) \right)}\]
Now as \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right),\] so,
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)\]
So using this above, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left[ \left( \tan \theta -\sec \theta \right)+\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right) \right]}\]
We take \[\sec \theta -\tan \theta \] common from the denominator, so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ -1+\tan \theta +\sec \theta \right]}\]
Rearranging the terms, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ \tan \theta +\sec \theta -1 \right]}\]
Cancelling the like terms in the numerator and denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\]
Hence proved.
Note:
Students need to remember that \[\tan \theta -\sec \theta \] can be written in terms of \[\sec \theta -\tan \theta .\] We take \[\tan \theta -\sec \theta \] and from this we take – 1 common, so we get,
\[\tan \theta -\sec \theta =-1\left( -\tan \theta +\sec \theta \right)\]
Rearranging the terms, we will get,
\[\Rightarrow \tan \theta -\sec \theta =-1\left( \sec \theta -\tan \theta \right)\]
So, we get,
\[\Rightarrow \tan \theta -\sec \theta =-\left( \sec \theta -\tan \theta \right)\]
We need to be very careful while simplifying or if we get missed in the initial state, it could lead to the wrong solution.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

