
Prove that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\] using the identity \[{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .\]
Answer
504.3k+ views
Hint: We are given \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\] and we have to solve so that it becomes \[\dfrac{1}{\sec \theta -\tan \theta }.\] We will first start with the left-hand side then we will divide the numerator and denominator by \[\cos \theta .\] And then we will have the equation in terms of \[\sec \theta \] and \[\tan \theta .\] Once we have that we use \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] to solve further we take the common term outside from the denominator. Once we simplify and cancel the common terms in the numerator and denominator, we will get our desired solution.
Complete step by step answer:
We are given that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\] we have to show that this is the same as \[\dfrac{1}{\sec \theta -\tan \theta }.\] This means we have to show that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\] by using the identity \[{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .\] To solve we should learn certain things. Firstly, \[\tan \theta \] is defined as \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\] And \[\sec \theta \] is required for \[\cos \theta .\]
\[\Rightarrow \sec \theta =\dfrac{1}{\cos \theta }\]
And also that since \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so we get, \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\]
Now, to solve the given problem, we will start by considering the left-hand side. So, we have
\[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\]
Now, we divide the numerator and denominator by \[\cos \theta \] so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta -\cos \theta +1}{\cos \theta }}{\dfrac{\sin \theta +\cos \theta -1}{\cos \theta }}\]
On simplifying, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta }{\cos \theta }-\dfrac{\cos \theta }{\cos \theta }+\dfrac{1}{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\cos \theta }-\dfrac{1}{\cos \theta }}\]
Now, as \[\dfrac{1}{\cos \theta }=\sec \theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta ,\dfrac{\cos \theta }{\cos \theta }=1.\] So, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta -1+\sec \theta }{\tan \theta +1-\sec \theta }\]
So,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +1 \right)}\]
Now as \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\] Using this in the denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right) \right)}\]
Now as \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right),\] so,
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)\]
So using this above, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left[ \left( \tan \theta -\sec \theta \right)+\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right) \right]}\]
We take \[\sec \theta -\tan \theta \] common from the denominator, so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ -1+\tan \theta +\sec \theta \right]}\]
Rearranging the terms, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ \tan \theta +\sec \theta -1 \right]}\]
Cancelling the like terms in the numerator and denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\]
Hence proved.
Note:
Students need to remember that \[\tan \theta -\sec \theta \] can be written in terms of \[\sec \theta -\tan \theta .\] We take \[\tan \theta -\sec \theta \] and from this we take – 1 common, so we get,
\[\tan \theta -\sec \theta =-1\left( -\tan \theta +\sec \theta \right)\]
Rearranging the terms, we will get,
\[\Rightarrow \tan \theta -\sec \theta =-1\left( \sec \theta -\tan \theta \right)\]
So, we get,
\[\Rightarrow \tan \theta -\sec \theta =-\left( \sec \theta -\tan \theta \right)\]
We need to be very careful while simplifying or if we get missed in the initial state, it could lead to the wrong solution.
Complete step by step answer:
We are given that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\] we have to show that this is the same as \[\dfrac{1}{\sec \theta -\tan \theta }.\] This means we have to show that \[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\] by using the identity \[{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .\] To solve we should learn certain things. Firstly, \[\tan \theta \] is defined as \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\] And \[\sec \theta \] is required for \[\cos \theta .\]
\[\Rightarrow \sec \theta =\dfrac{1}{\cos \theta }\]
And also that since \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so we get, \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\]
Now, to solve the given problem, we will start by considering the left-hand side. So, we have
\[\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\]
Now, we divide the numerator and denominator by \[\cos \theta \] so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta -\cos \theta +1}{\cos \theta }}{\dfrac{\sin \theta +\cos \theta -1}{\cos \theta }}\]
On simplifying, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\dfrac{\sin \theta }{\cos \theta }-\dfrac{\cos \theta }{\cos \theta }+\dfrac{1}{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\cos \theta }-\dfrac{1}{\cos \theta }}\]
Now, as \[\dfrac{1}{\cos \theta }=\sec \theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta ,\dfrac{\cos \theta }{\cos \theta }=1.\] So, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta -1+\sec \theta }{\tan \theta +1-\sec \theta }\]
So,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +1 \right)}\]
Now as \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,\] so \[1={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .\] Using this in the denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \tan \theta -\sec \theta +\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right) \right)}\]
Now as \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right),\] so,
\[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)\]
So using this above, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left[ \left( \tan \theta -\sec \theta \right)+\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right) \right]}\]
We take \[\sec \theta -\tan \theta \] common from the denominator, so we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ -1+\tan \theta +\sec \theta \right]}\]
Rearranging the terms, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{\tan \theta +\sec \theta -1}{\left( \sec \theta -\tan \theta \right)\left[ \tan \theta +\sec \theta -1 \right]}\]
Cancelling the like terms in the numerator and denominator, we get,
\[\Rightarrow \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }\]
Hence proved.
Note:
Students need to remember that \[\tan \theta -\sec \theta \] can be written in terms of \[\sec \theta -\tan \theta .\] We take \[\tan \theta -\sec \theta \] and from this we take – 1 common, so we get,
\[\tan \theta -\sec \theta =-1\left( -\tan \theta +\sec \theta \right)\]
Rearranging the terms, we will get,
\[\Rightarrow \tan \theta -\sec \theta =-1\left( \sec \theta -\tan \theta \right)\]
So, we get,
\[\Rightarrow \tan \theta -\sec \theta =-\left( \sec \theta -\tan \theta \right)\]
We need to be very careful while simplifying or if we get missed in the initial state, it could lead to the wrong solution.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Write a paragraph on any one of the following outlines class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which period in Medieval Western Europe is known as class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
