
Prove that $ \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }} $ using $ se{c^2}\theta = 1 + {\tan ^2}\theta $
Answer
569.7k+ views
Hint: On the left hand side of the given equation, we have sine and cosine; on the right hand side, we have tangent and secant. So divide the numerator and denominator of the left hand side of the equation by $ \cos \theta $ . We will get a result in terms of tangent and secant as tangent is the ratio of sine and cosine; secant is the inverse of cosine. Using $ se{c^2}\theta = 1 + {\tan ^2}\theta $ , prove the given equation.
Complete step-by-step answer:
We are given to prove $ \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }} $ .
And $ se{c^2}\theta = 1 + {\tan ^2}\theta $
Sending $ {\tan ^2}\theta $ from the right hand side to left hand side, we get
$ se{c^2}\theta - {\tan ^2}\theta = 1 $ …….. equation (1)
Considering $ sec\theta $ as ‘a’ and $ \tan \theta $ as ‘b’, the above equation becomes $ {a^2} - {b^2} = 1 $
We already know that $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
Therefore, $ se{c^2}\theta - {\tan ^2}\theta = \left( {sec\theta + \tan \theta } \right)\left( {sec\theta - \tan \theta } \right) $ …… equation (2)
The given equation to prove is $ \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }} $
Considering the LHS
$ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} $
We are now dividing the numerator and denominator of the above trigonometric expression by $ \cos \theta $
$ \Rightarrow \dfrac{{\left( {\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}} \right)}}{{\left( {\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}} \right)}} $
$ \Rightarrow \dfrac{{\left( {\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}} \right)}}{{\left( {\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\cos \theta }} - \dfrac{1}{{\cos \theta }}} \right)}} $
We know that the ratio of sine and cosine gives tan and the inverse of cosine is secant.
This gives,
$ \Rightarrow \dfrac{{\tan \theta - 1 + sec\theta }}{{\tan \theta + 1 - sec\theta }} $
Writing tangent and secant terms together
$ \Rightarrow \dfrac{{\tan \theta + sec\theta - 1}}{{\tan \theta - sec\theta + 1}} $
Now we are multiplying the numerator and denominator by $ \tan \theta - sec\theta $
$ \Rightarrow \dfrac{{\left( {\tan \theta + sec\theta - 1} \right)\left( {\tan \theta - sec\theta } \right)}}{{\left( {\tan \theta - sec\theta + 1} \right)\left( {\tan \theta - sec\theta } \right)}} $
$ \Rightarrow \dfrac{{\left( {\tan \theta + sec\theta } \right)\left( {\tan \theta - sec\theta } \right) - \left( {\tan \theta - sec\theta } \right)}}{{\left( {\tan \theta - sec\theta } \right)\left( {\tan \theta - sec\theta } \right) + \left( {\tan \theta - sec\theta } \right)}} $
$ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta - se{c^2}\theta } \right) - \left( {\tan \theta - sec\theta } \right)}}{{{{\left( {\tan \theta - sec\theta } \right)}^2} + \left( {\tan \theta - sec\theta } \right)}} $ ( since from equation 2)
We know from equation 1 that $ se{c^2}\theta - {\tan ^2}\theta = 1 $ , this means $ {\tan ^2}\theta - se{c^2}\theta = - 1 $
$ \Rightarrow \dfrac{{ - 1 - \left( {\tan \theta - sec\theta } \right)}}{{{{\left( {\tan \theta - sec\theta } \right)}^2} + \left( {\tan \theta - sec\theta } \right)}} $
$ \Rightarrow \dfrac{{ - \left[ {1 + \left( {\tan \theta - sec\theta } \right)} \right]}}{{\left( {\tan \theta - sec\theta } \right)\left( {1 + \left( {\tan \theta - sec\theta } \right)} \right)}} $
Cancelling $ 1 + \left( {\tan \theta - sec\theta } \right) $ in the numerator and denominator, we get
$ \Rightarrow \dfrac{{ - 1}}{{\left( {\tan \theta - sec\theta } \right)}} $
On multiplying the numerator and denominator by -1, we get
$ \Rightarrow \dfrac{1}{{\left( {sec\theta - \tan \theta } \right)}} $
Therefore, the value of $ \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} $ is $ \dfrac{1}{{sec\theta - \tan \theta }} $ .
Hence, proved.
Note: Here we have considered the LHS of the equation and proved it that it is equal to the RHS. We can also prove it by first considering the RHS and finding its solution. $ se{c^2}\theta - {\tan ^2}\theta = 1 $ is one of the Pythagorean identities. $ {\sin ^2}\theta + {\cos ^2}\theta = 1,\cos e{c^2}\theta - co{t^2}\theta = 1 $ are the other two Pythagorean identities.
Complete step-by-step answer:
We are given to prove $ \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }} $ .
And $ se{c^2}\theta = 1 + {\tan ^2}\theta $
Sending $ {\tan ^2}\theta $ from the right hand side to left hand side, we get
$ se{c^2}\theta - {\tan ^2}\theta = 1 $ …….. equation (1)
Considering $ sec\theta $ as ‘a’ and $ \tan \theta $ as ‘b’, the above equation becomes $ {a^2} - {b^2} = 1 $
We already know that $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
Therefore, $ se{c^2}\theta - {\tan ^2}\theta = \left( {sec\theta + \tan \theta } \right)\left( {sec\theta - \tan \theta } \right) $ …… equation (2)
The given equation to prove is $ \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }} $
Considering the LHS
$ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} $
We are now dividing the numerator and denominator of the above trigonometric expression by $ \cos \theta $
$ \Rightarrow \dfrac{{\left( {\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}} \right)}}{{\left( {\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}} \right)}} $
$ \Rightarrow \dfrac{{\left( {\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}} \right)}}{{\left( {\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\cos \theta }} - \dfrac{1}{{\cos \theta }}} \right)}} $
We know that the ratio of sine and cosine gives tan and the inverse of cosine is secant.
This gives,
$ \Rightarrow \dfrac{{\tan \theta - 1 + sec\theta }}{{\tan \theta + 1 - sec\theta }} $
Writing tangent and secant terms together
$ \Rightarrow \dfrac{{\tan \theta + sec\theta - 1}}{{\tan \theta - sec\theta + 1}} $
Now we are multiplying the numerator and denominator by $ \tan \theta - sec\theta $
$ \Rightarrow \dfrac{{\left( {\tan \theta + sec\theta - 1} \right)\left( {\tan \theta - sec\theta } \right)}}{{\left( {\tan \theta - sec\theta + 1} \right)\left( {\tan \theta - sec\theta } \right)}} $
$ \Rightarrow \dfrac{{\left( {\tan \theta + sec\theta } \right)\left( {\tan \theta - sec\theta } \right) - \left( {\tan \theta - sec\theta } \right)}}{{\left( {\tan \theta - sec\theta } \right)\left( {\tan \theta - sec\theta } \right) + \left( {\tan \theta - sec\theta } \right)}} $
$ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta - se{c^2}\theta } \right) - \left( {\tan \theta - sec\theta } \right)}}{{{{\left( {\tan \theta - sec\theta } \right)}^2} + \left( {\tan \theta - sec\theta } \right)}} $ ( since from equation 2)
We know from equation 1 that $ se{c^2}\theta - {\tan ^2}\theta = 1 $ , this means $ {\tan ^2}\theta - se{c^2}\theta = - 1 $
$ \Rightarrow \dfrac{{ - 1 - \left( {\tan \theta - sec\theta } \right)}}{{{{\left( {\tan \theta - sec\theta } \right)}^2} + \left( {\tan \theta - sec\theta } \right)}} $
$ \Rightarrow \dfrac{{ - \left[ {1 + \left( {\tan \theta - sec\theta } \right)} \right]}}{{\left( {\tan \theta - sec\theta } \right)\left( {1 + \left( {\tan \theta - sec\theta } \right)} \right)}} $
Cancelling $ 1 + \left( {\tan \theta - sec\theta } \right) $ in the numerator and denominator, we get
$ \Rightarrow \dfrac{{ - 1}}{{\left( {\tan \theta - sec\theta } \right)}} $
On multiplying the numerator and denominator by -1, we get
$ \Rightarrow \dfrac{1}{{\left( {sec\theta - \tan \theta } \right)}} $
Therefore, the value of $ \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} $ is $ \dfrac{1}{{sec\theta - \tan \theta }} $ .
Hence, proved.
Note: Here we have considered the LHS of the equation and proved it that it is equal to the RHS. We can also prove it by first considering the RHS and finding its solution. $ se{c^2}\theta - {\tan ^2}\theta = 1 $ is one of the Pythagorean identities. $ {\sin ^2}\theta + {\cos ^2}\theta = 1,\cos e{c^2}\theta - co{t^2}\theta = 1 $ are the other two Pythagorean identities.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

