
Prove that:
$\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x$
Answer
576k+ views
Hint: For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression
Complete step by step Answer:
Given data:$\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x$
Taking the expression in the left-hand side
$ \Rightarrow \dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}}$
Using the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the numerator
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\sin \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}}$
And now using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$in the denominator
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\sin \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}{{2\cos \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\cos \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}$
On simplification we get,
$ \Rightarrow \dfrac{{2\sin \left( {6x} \right)\cos \left( x \right) + 2\sin \left( {6x} \right)\cos \left( {3x} \right)}}{{2\cos \left( {6x} \right)\cos \left( x \right) + 2\cos \left( {6x} \right)\cos \left( {3x} \right)}}$
Taking \[2sin\left( {6x} \right)\] common from the numerator, we get,
$ \Rightarrow \dfrac{{2\sin \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}{{2\cos \left( {6x} \right)\cos \left( x \right) + 2\cos \left( {6x} \right)\cos \left( {3x} \right)}}$
Now, taking \[2cos\left( {6x} \right)\] common from the denominator, we get,
$ \Rightarrow \dfrac{{2\sin \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}{{2\cos \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}$
Dividing both numerator and the denominator by $2[\cos \left( x \right) + \cos \left( {3x} \right)]$, we get,
$ \Rightarrow \dfrac{{\sin \left( {6x} \right)}}{{\cos \left( {6x} \right)}}$
Now using the formula $\dfrac{{\sin \left( A \right)}}{{\cos \left( A \right)}} = \tan A$
$ \Rightarrow \tan 6x$, which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Note: We also prove that $\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x$, by substituting the value of x
Substituting \[x = 0\]
Left-hand side$ = \dfrac{{(\sin 0 + \sin 0) + (\sin 0 + \sin 0)}}{{(\cos 0 + \cos 0) + (\cos 0 + \cos 0)}}$
$ = 0$, since $\sin 0 = 0$
right-hand side$ = \tan 6(0)$
\[ = 0\] , $\tan 0 = 0$
Since, Left-hand side=right-hand side\[ = 0\]
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verification.
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
We simplify in such a manner that it results in the equivalent value to the other side expression
Complete step by step Answer:
Given data:$\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x$
Taking the expression in the left-hand side
$ \Rightarrow \dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}}$
Using the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the numerator
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\sin \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}}$
And now using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$in the denominator
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\sin \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}{{2\cos \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\cos \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}$
On simplification we get,
$ \Rightarrow \dfrac{{2\sin \left( {6x} \right)\cos \left( x \right) + 2\sin \left( {6x} \right)\cos \left( {3x} \right)}}{{2\cos \left( {6x} \right)\cos \left( x \right) + 2\cos \left( {6x} \right)\cos \left( {3x} \right)}}$
Taking \[2sin\left( {6x} \right)\] common from the numerator, we get,
$ \Rightarrow \dfrac{{2\sin \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}{{2\cos \left( {6x} \right)\cos \left( x \right) + 2\cos \left( {6x} \right)\cos \left( {3x} \right)}}$
Now, taking \[2cos\left( {6x} \right)\] common from the denominator, we get,
$ \Rightarrow \dfrac{{2\sin \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}{{2\cos \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}$
Dividing both numerator and the denominator by $2[\cos \left( x \right) + \cos \left( {3x} \right)]$, we get,
$ \Rightarrow \dfrac{{\sin \left( {6x} \right)}}{{\cos \left( {6x} \right)}}$
Now using the formula $\dfrac{{\sin \left( A \right)}}{{\cos \left( A \right)}} = \tan A$
$ \Rightarrow \tan 6x$, which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Note: We also prove that $\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x$, by substituting the value of x
Substituting \[x = 0\]
Left-hand side$ = \dfrac{{(\sin 0 + \sin 0) + (\sin 0 + \sin 0)}}{{(\cos 0 + \cos 0) + (\cos 0 + \cos 0)}}$
$ = 0$, since $\sin 0 = 0$
right-hand side$ = \tan 6(0)$
\[ = 0\] , $\tan 0 = 0$
Since, Left-hand side=right-hand side\[ = 0\]
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verification.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

