
Prove that - $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }} = \sqrt 3 $.
Answer
477k+ views
Hint: To solve this question we will use the addition property of sine functions that is,
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
And also, the subtraction property of sine function, that is,
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Getting these values for the angles given in the question, then we will substitute the obtained values in the given condition. Then by operating accordingly we can get the answer to our problem. So, let us see how to solve this question.
Complete step-by-step answer:
To prove- $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }} = \sqrt 3 $.
LHS- $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }}$
Now, we know, the sine rule of addition, that is,
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Now, substituting $A = 75^\circ $ and $B = 15^\circ $, in the above formula, we get,
$\sin 75^\circ + \sin 15^\circ = 2\sin \left( {\dfrac{{75^\circ + 15^\circ }}{2}} \right)\cos \left( {\dfrac{{75^\circ - 15^\circ }}{2}} \right)$
$ \Rightarrow \sin 75^\circ + \sin 15^\circ = 2\sin \left( {\dfrac{{90^\circ }}{2}} \right)\cos \left( {\dfrac{{60^\circ }}{2}} \right)$
Further simplifying, we get,
$ \Rightarrow \sin 75^\circ + \sin 15^\circ = 2\sin \left( {45^\circ } \right)\cos \left( {30^\circ } \right) - - - \left( 1 \right)$
Again, we know, the sine rule of subtraction, that is,
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Now, substituting $A = 75^\circ $ and $B = 15^\circ $, in the above formula, we get,
$\sin 75^\circ - \sin 15^\circ = 2\cos \left( {\dfrac{{75^\circ + 15^\circ }}{2}} \right)\sin \left( {\dfrac{{75^\circ - 15^\circ }}{2}} \right)$
$ \Rightarrow \sin 75^\circ - \sin 15^\circ = 2\cos \left( {\dfrac{{90^\circ }}{2}} \right)\sin \left( {\dfrac{{60^\circ }}{2}} \right)$
Further simplifying, we get,
$ \Rightarrow \sin 75^\circ - \sin 15^\circ = 2\cos \left( {45^\circ } \right)\sin \left( {30^\circ } \right) - - - \left( 2 \right)$
Now, substituting the values obtained in $\left( 1 \right)$ and $\left( 2 \right)$ in $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }}$, we get,
$\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }}$
\[ = \dfrac{{2\sin \left( {45^\circ } \right)\cos \left( {30^\circ } \right)}}{{2\cos \left( {45^\circ } \right)\sin \left( {30^\circ } \right)}}\]
\[ = \dfrac{{\sin \left( {45^\circ } \right)\cos \left( {30^\circ } \right)}}{{\cos \left( {45^\circ } \right)\sin \left( {30^\circ } \right)}}\]
Now, we know, $\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $ and $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $.
Therefore, substituting these values in the above trigonometric sum, we get,
$ = \tan \left( {45^\circ } \right)\cot \left( {30^\circ } \right)$
Now, we know, $\tan 45^\circ = 1$ and $\cot 30^\circ = \sqrt 3 $.
Now, substituting these values in the above trigonometric sum, we get,
$ = 1.\sqrt 3 $
$ = \sqrt 3 $
Therefore, LHS=RHS.
That is, $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }} = \sqrt 3 $.
Hence, proved.
Note: We could have also used the values of sine and cosine function in the problem for the given values of the angles instead of turning them into tangent and cotangent functions. We would have the same answer in that way also. But we use the trigonometric formulas to simplify the expressions and find the final answer easily.
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
And also, the subtraction property of sine function, that is,
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Getting these values for the angles given in the question, then we will substitute the obtained values in the given condition. Then by operating accordingly we can get the answer to our problem. So, let us see how to solve this question.
Complete step-by-step answer:
To prove- $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }} = \sqrt 3 $.
LHS- $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }}$
Now, we know, the sine rule of addition, that is,
$\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Now, substituting $A = 75^\circ $ and $B = 15^\circ $, in the above formula, we get,
$\sin 75^\circ + \sin 15^\circ = 2\sin \left( {\dfrac{{75^\circ + 15^\circ }}{2}} \right)\cos \left( {\dfrac{{75^\circ - 15^\circ }}{2}} \right)$
$ \Rightarrow \sin 75^\circ + \sin 15^\circ = 2\sin \left( {\dfrac{{90^\circ }}{2}} \right)\cos \left( {\dfrac{{60^\circ }}{2}} \right)$
Further simplifying, we get,
$ \Rightarrow \sin 75^\circ + \sin 15^\circ = 2\sin \left( {45^\circ } \right)\cos \left( {30^\circ } \right) - - - \left( 1 \right)$
Again, we know, the sine rule of subtraction, that is,
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Now, substituting $A = 75^\circ $ and $B = 15^\circ $, in the above formula, we get,
$\sin 75^\circ - \sin 15^\circ = 2\cos \left( {\dfrac{{75^\circ + 15^\circ }}{2}} \right)\sin \left( {\dfrac{{75^\circ - 15^\circ }}{2}} \right)$
$ \Rightarrow \sin 75^\circ - \sin 15^\circ = 2\cos \left( {\dfrac{{90^\circ }}{2}} \right)\sin \left( {\dfrac{{60^\circ }}{2}} \right)$
Further simplifying, we get,
$ \Rightarrow \sin 75^\circ - \sin 15^\circ = 2\cos \left( {45^\circ } \right)\sin \left( {30^\circ } \right) - - - \left( 2 \right)$
Now, substituting the values obtained in $\left( 1 \right)$ and $\left( 2 \right)$ in $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }}$, we get,
$\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }}$
\[ = \dfrac{{2\sin \left( {45^\circ } \right)\cos \left( {30^\circ } \right)}}{{2\cos \left( {45^\circ } \right)\sin \left( {30^\circ } \right)}}\]
\[ = \dfrac{{\sin \left( {45^\circ } \right)\cos \left( {30^\circ } \right)}}{{\cos \left( {45^\circ } \right)\sin \left( {30^\circ } \right)}}\]
Now, we know, $\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $ and $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $.
Therefore, substituting these values in the above trigonometric sum, we get,
$ = \tan \left( {45^\circ } \right)\cot \left( {30^\circ } \right)$
Now, we know, $\tan 45^\circ = 1$ and $\cot 30^\circ = \sqrt 3 $.
Now, substituting these values in the above trigonometric sum, we get,
$ = 1.\sqrt 3 $
$ = \sqrt 3 $
Therefore, LHS=RHS.
That is, $\dfrac{{\sin 75^\circ + \sin 15^\circ }}{{\sin 75^\circ - \sin 15^\circ }} = \sqrt 3 $.
Hence, proved.
Note: We could have also used the values of sine and cosine function in the problem for the given values of the angles instead of turning them into tangent and cotangent functions. We would have the same answer in that way also. But we use the trigonometric formulas to simplify the expressions and find the final answer easily.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

