
Prove that $\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x$ .
Answer
597.6k+ views
Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas of $\sin C+\sin D$ , $\cos C-\cos D$ and $\cos 2\theta $ for simplifying the term on the left-hand side. After that, we will easily prove the desired result.
Complete step-by-step answer:
Given:
We have to prove the following equation:
$\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x$
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..................\left( 1 \right) \\
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...............\left( 2 \right) \\
& \cos 2\theta =1-2{{\sin }^{2}}\theta ......................................................\left( 3 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta .....................................................\left( 4 \right) \\
& \dfrac{\sin \theta }{\cos \theta }=\tan \theta ................................................................\left( 5 \right) \\
\end{align}$
Now, we will use the above five formulas to simplify the term on the left-hand side.
On the left-hand side we have $\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}$ . Then,
$\begin{align}
& \dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x} \\
& \Rightarrow \dfrac{\sin 5x+\sin x-2\sin 3x}{\cos 5x-\cos x} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\sin 5x+\sin x=2\sin 3x\cos 2x$ and formula from the equation (2) to write $\cos 5x-\cos x=-2\sin 3x\sin 2x$ in the above expression. Then,
$\begin{align}
& \dfrac{\sin 5x+\sin x-2\sin 3x}{\cos 5x-\cos x} \\
& \Rightarrow \dfrac{2\sin \left( \dfrac{5x+x}{2} \right)\cos \left( \dfrac{5x-x}{2} \right)-2\sin 3x}{-2\sin \left( \dfrac{5x+x}{2} \right)\sin \left( \dfrac{5x-x}{2} \right)} \\
& \Rightarrow \dfrac{2\sin 3x\cos 2x-2\sin 3x}{-2\sin 3x\sin 2x} \\
\end{align}$
Now, we can take $-2\sin 3x$ common from each term in the numerator of the above expression. Then,
$\begin{align}
& \dfrac{2\sin 3x\cos 2x-2\sin 3x}{-2\sin 3x\sin 2x} \\
& \Rightarrow \dfrac{-2\sin 3x\left( 1-\cos 2x \right)}{-2\sin 3x\sin 2x} \\
& \Rightarrow \dfrac{1-\cos 2x}{\sin 2x} \\
\end{align}$
Now, we will use the formula from the equation (3) to write $1-\cos 2x=2{{\sin }^{2}}x$ and $\sin 2x=2\sin x\cos x$ in the above expression. Then,
$\begin{align}
& \dfrac{1-\cos 2x}{\sin 2x} \\
& \Rightarrow \dfrac{2{{\sin }^{2}}x}{2\sin x\cos x} \\
& \Rightarrow \dfrac{\sin x}{\cos x} \\
\end{align}$
Now, we will use the formula from the equation (5) to write $\dfrac{\sin x}{\cos x}=\tan x$ in the above expression. Then,
$\begin{align}
& \dfrac{\sin x}{\cos x} \\
& \Rightarrow \tan x \\
\end{align}$
Now, from the above result we conclude that the value of the expression $\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}$ will be equal to the value of the expression $\tan x$ . Then,
$\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x$
Now, from the above result we conclude that, the term on the left-hand side is equal to the term on the right-hand side.
Thus, $\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas like $\cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.
Complete step-by-step answer:
Given:
We have to prove the following equation:
$\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x$
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..................\left( 1 \right) \\
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...............\left( 2 \right) \\
& \cos 2\theta =1-2{{\sin }^{2}}\theta ......................................................\left( 3 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta .....................................................\left( 4 \right) \\
& \dfrac{\sin \theta }{\cos \theta }=\tan \theta ................................................................\left( 5 \right) \\
\end{align}$
Now, we will use the above five formulas to simplify the term on the left-hand side.
On the left-hand side we have $\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}$ . Then,
$\begin{align}
& \dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x} \\
& \Rightarrow \dfrac{\sin 5x+\sin x-2\sin 3x}{\cos 5x-\cos x} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\sin 5x+\sin x=2\sin 3x\cos 2x$ and formula from the equation (2) to write $\cos 5x-\cos x=-2\sin 3x\sin 2x$ in the above expression. Then,
$\begin{align}
& \dfrac{\sin 5x+\sin x-2\sin 3x}{\cos 5x-\cos x} \\
& \Rightarrow \dfrac{2\sin \left( \dfrac{5x+x}{2} \right)\cos \left( \dfrac{5x-x}{2} \right)-2\sin 3x}{-2\sin \left( \dfrac{5x+x}{2} \right)\sin \left( \dfrac{5x-x}{2} \right)} \\
& \Rightarrow \dfrac{2\sin 3x\cos 2x-2\sin 3x}{-2\sin 3x\sin 2x} \\
\end{align}$
Now, we can take $-2\sin 3x$ common from each term in the numerator of the above expression. Then,
$\begin{align}
& \dfrac{2\sin 3x\cos 2x-2\sin 3x}{-2\sin 3x\sin 2x} \\
& \Rightarrow \dfrac{-2\sin 3x\left( 1-\cos 2x \right)}{-2\sin 3x\sin 2x} \\
& \Rightarrow \dfrac{1-\cos 2x}{\sin 2x} \\
\end{align}$
Now, we will use the formula from the equation (3) to write $1-\cos 2x=2{{\sin }^{2}}x$ and $\sin 2x=2\sin x\cos x$ in the above expression. Then,
$\begin{align}
& \dfrac{1-\cos 2x}{\sin 2x} \\
& \Rightarrow \dfrac{2{{\sin }^{2}}x}{2\sin x\cos x} \\
& \Rightarrow \dfrac{\sin x}{\cos x} \\
\end{align}$
Now, we will use the formula from the equation (5) to write $\dfrac{\sin x}{\cos x}=\tan x$ in the above expression. Then,
$\begin{align}
& \dfrac{\sin x}{\cos x} \\
& \Rightarrow \tan x \\
\end{align}$
Now, from the above result we conclude that the value of the expression $\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}$ will be equal to the value of the expression $\tan x$ . Then,
$\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x$
Now, from the above result we conclude that, the term on the left-hand side is equal to the term on the right-hand side.
Thus, $\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas like $\cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

