
Prove that $\dfrac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}} + \dfrac{{1 + \operatorname{Cos} A}}{{\operatorname{Sin} A}} = 2\operatorname{Cos} ecA$
Answer
593.7k+ views
Hint: Here first we will take the L.C.M of L.H.S equation.
We know that \[{\sin ^2}A + {\cos ^2}A = 1\] and $\dfrac{1}{{\sin A}} = \cos ecA$, simply solve the left hand of equation using these identities and get the value of RHS
Complete step-by-step answer:
Let’s start solving with left hand equation
We have $\dfrac{{\sin A}}{{1 + \cos A}} + \dfrac{{1 + \cos A}}{{\sin A}}$ ……….(1)
Taking L.C.M of (1)
\[
= \dfrac{{\operatorname{Sin} A\left( {\operatorname{Sin} A} \right) + \left( {1 + \operatorname{Cos} A} \right)\left( {1 + \operatorname{Cos} A} \right)}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + {{(1 + \operatorname{Cos} A)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
\]
Apply the formula of ${(a + b)^2} = {a^2} + 2ab + {b^2}$ for ${(1 + \cos A)^2}$ we get:-
\[
= \dfrac{{{{\operatorname{Sin} }^2}A + {{\left( 1 \right)}^2} + 2\left( 1 \right)\left( {\operatorname{Cos} A} \right) + {{\left( {\operatorname{Cos} A} \right)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + 1 + 2\operatorname{Cos} A + {{\operatorname{Cos} }^2}A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
We know that ${\operatorname{Sin} ^2}A + {\operatorname{Cos} ^2}A = 1$
Therefore putting in the value we get:-
\[
= \dfrac{{1 + 1 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\; \\
= \dfrac{{2 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
Take 2 as common from numerator we get:-
\[ = \dfrac{{2(1 + \operatorname{Cos} A)}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\]
Cancelling the terms we get:-
\[ = \dfrac{2}{{\operatorname{Sin} A}}\]
\[ = 2.\dfrac{1}{{\operatorname{Sin} A}}\]
Now we know that,
\[\dfrac{1}{{\operatorname{Sin} A}} = \operatorname{Cos} ecA\]
Therefore putting in the value we get:-
\[ = 2\operatorname{Cos} ecA\]
\[ = {\text{ }}RHS\]
Since \[LHS = {\text{ }}RHS\]
Hence proved
Note:
In these types of questions students just need to use basic identities of trigonometry then just simplify your question and then put these identities to get your answer.
The identities used should be correct and accurate.
Also, Cosec is the reciprocal of sine
We know that \[{\sin ^2}A + {\cos ^2}A = 1\] and $\dfrac{1}{{\sin A}} = \cos ecA$, simply solve the left hand of equation using these identities and get the value of RHS
Complete step-by-step answer:
Let’s start solving with left hand equation
We have $\dfrac{{\sin A}}{{1 + \cos A}} + \dfrac{{1 + \cos A}}{{\sin A}}$ ……….(1)
Taking L.C.M of (1)
\[
= \dfrac{{\operatorname{Sin} A\left( {\operatorname{Sin} A} \right) + \left( {1 + \operatorname{Cos} A} \right)\left( {1 + \operatorname{Cos} A} \right)}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + {{(1 + \operatorname{Cos} A)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
\]
Apply the formula of ${(a + b)^2} = {a^2} + 2ab + {b^2}$ for ${(1 + \cos A)^2}$ we get:-
\[
= \dfrac{{{{\operatorname{Sin} }^2}A + {{\left( 1 \right)}^2} + 2\left( 1 \right)\left( {\operatorname{Cos} A} \right) + {{\left( {\operatorname{Cos} A} \right)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + 1 + 2\operatorname{Cos} A + {{\operatorname{Cos} }^2}A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
We know that ${\operatorname{Sin} ^2}A + {\operatorname{Cos} ^2}A = 1$
Therefore putting in the value we get:-
\[
= \dfrac{{1 + 1 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\; \\
= \dfrac{{2 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
Take 2 as common from numerator we get:-
\[ = \dfrac{{2(1 + \operatorname{Cos} A)}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\]
Cancelling the terms we get:-
\[ = \dfrac{2}{{\operatorname{Sin} A}}\]
\[ = 2.\dfrac{1}{{\operatorname{Sin} A}}\]
Now we know that,
\[\dfrac{1}{{\operatorname{Sin} A}} = \operatorname{Cos} ecA\]
Therefore putting in the value we get:-
\[ = 2\operatorname{Cos} ecA\]
\[ = {\text{ }}RHS\]
Since \[LHS = {\text{ }}RHS\]
Hence proved
Note:
In these types of questions students just need to use basic identities of trigonometry then just simplify your question and then put these identities to get your answer.
The identities used should be correct and accurate.
Also, Cosec is the reciprocal of sine
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

