
Prove that $\dfrac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}} + \dfrac{{1 + \operatorname{Cos} A}}{{\operatorname{Sin} A}} = 2\operatorname{Cos} ecA$
Answer
580.2k+ views
Hint: Here first we will take the L.C.M of L.H.S equation.
We know that \[{\sin ^2}A + {\cos ^2}A = 1\] and $\dfrac{1}{{\sin A}} = \cos ecA$, simply solve the left hand of equation using these identities and get the value of RHS
Complete step-by-step answer:
Let’s start solving with left hand equation
We have $\dfrac{{\sin A}}{{1 + \cos A}} + \dfrac{{1 + \cos A}}{{\sin A}}$ ……….(1)
Taking L.C.M of (1)
\[
= \dfrac{{\operatorname{Sin} A\left( {\operatorname{Sin} A} \right) + \left( {1 + \operatorname{Cos} A} \right)\left( {1 + \operatorname{Cos} A} \right)}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + {{(1 + \operatorname{Cos} A)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
\]
Apply the formula of ${(a + b)^2} = {a^2} + 2ab + {b^2}$ for ${(1 + \cos A)^2}$ we get:-
\[
= \dfrac{{{{\operatorname{Sin} }^2}A + {{\left( 1 \right)}^2} + 2\left( 1 \right)\left( {\operatorname{Cos} A} \right) + {{\left( {\operatorname{Cos} A} \right)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + 1 + 2\operatorname{Cos} A + {{\operatorname{Cos} }^2}A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
We know that ${\operatorname{Sin} ^2}A + {\operatorname{Cos} ^2}A = 1$
Therefore putting in the value we get:-
\[
= \dfrac{{1 + 1 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\; \\
= \dfrac{{2 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
Take 2 as common from numerator we get:-
\[ = \dfrac{{2(1 + \operatorname{Cos} A)}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\]
Cancelling the terms we get:-
\[ = \dfrac{2}{{\operatorname{Sin} A}}\]
\[ = 2.\dfrac{1}{{\operatorname{Sin} A}}\]
Now we know that,
\[\dfrac{1}{{\operatorname{Sin} A}} = \operatorname{Cos} ecA\]
Therefore putting in the value we get:-
\[ = 2\operatorname{Cos} ecA\]
\[ = {\text{ }}RHS\]
Since \[LHS = {\text{ }}RHS\]
Hence proved
Note:
In these types of questions students just need to use basic identities of trigonometry then just simplify your question and then put these identities to get your answer.
The identities used should be correct and accurate.
Also, Cosec is the reciprocal of sine
We know that \[{\sin ^2}A + {\cos ^2}A = 1\] and $\dfrac{1}{{\sin A}} = \cos ecA$, simply solve the left hand of equation using these identities and get the value of RHS
Complete step-by-step answer:
Let’s start solving with left hand equation
We have $\dfrac{{\sin A}}{{1 + \cos A}} + \dfrac{{1 + \cos A}}{{\sin A}}$ ……….(1)
Taking L.C.M of (1)
\[
= \dfrac{{\operatorname{Sin} A\left( {\operatorname{Sin} A} \right) + \left( {1 + \operatorname{Cos} A} \right)\left( {1 + \operatorname{Cos} A} \right)}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + {{(1 + \operatorname{Cos} A)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
\]
Apply the formula of ${(a + b)^2} = {a^2} + 2ab + {b^2}$ for ${(1 + \cos A)^2}$ we get:-
\[
= \dfrac{{{{\operatorname{Sin} }^2}A + {{\left( 1 \right)}^2} + 2\left( 1 \right)\left( {\operatorname{Cos} A} \right) + {{\left( {\operatorname{Cos} A} \right)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\
= \dfrac{{{{\operatorname{Sin} }^2}A + 1 + 2\operatorname{Cos} A + {{\operatorname{Cos} }^2}A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
We know that ${\operatorname{Sin} ^2}A + {\operatorname{Cos} ^2}A = 1$
Therefore putting in the value we get:-
\[
= \dfrac{{1 + 1 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\; \\
= \dfrac{{2 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\
\]
Take 2 as common from numerator we get:-
\[ = \dfrac{{2(1 + \operatorname{Cos} A)}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\]
Cancelling the terms we get:-
\[ = \dfrac{2}{{\operatorname{Sin} A}}\]
\[ = 2.\dfrac{1}{{\operatorname{Sin} A}}\]
Now we know that,
\[\dfrac{1}{{\operatorname{Sin} A}} = \operatorname{Cos} ecA\]
Therefore putting in the value we get:-
\[ = 2\operatorname{Cos} ecA\]
\[ = {\text{ }}RHS\]
Since \[LHS = {\text{ }}RHS\]
Hence proved
Note:
In these types of questions students just need to use basic identities of trigonometry then just simplify your question and then put these identities to get your answer.
The identities used should be correct and accurate.
Also, Cosec is the reciprocal of sine
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

